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We investigate all finite-component invariant wave equations ( -  iflaOa + ~)~ = 0 
that have a complete set of solutions describing massive particles. We discuss a 
practical method for the computation of the mass spectrum, an appropriate 
scalar product and adjoint wave function (defined without a hermitizing 
matrix), and the discrete symmetries P, T, and C. The Klein-Gordon divisor is 
studied in some detail; the corresponding propagators are found to be without 
contact terms. Such wave equations seem to offer the basis for a consistent 
description of multiplets of particles with any spin: They lead to quantum field 
theories that can be derived from a Lagrangian, have positive definite metric 
and energy, and satisfy the canonical commutation relations. Although we are 
here only considering noninteracting theories, it is evident that such equations 
are free of the inconsistencies usually encountered in higher spin theories. 

1. I N T R O D U C T I O N  

Fi f ty  years  af ter  the d iscovery  of  the Di rac  equa t ion  (Dirac ,  1928a, b), 
and  with m a n y  hundreds  of ar t ic les  and  numerous  books  (Corson,  1953; 
Corben ,  1968; Takahash i ,  1969; Viscollt i ,  1969; Pa~rl, 1969; Velo and  
Wigh tman ,  1978) a b o u t  relat ivis t ic  wave  equat ions ,  yet  ano the r  series of 
papers  on  this same subject  calls  for  a special  explanat ion .  Our  reason  for  
the renewed  inves t igat ion of this  topic  is quite s imple:  Despi te  the enor-  
mous  l i tera ture  in this f ield on ly  par t ia l  answers  are k n o w n  to m a n y  
quest ions,  and  mos t  p rob lems  of  prac t ica l  in teres t  have no t  been  s tud ied  at  
all. F o r  example ,  it  has  been  k n o w n  for a long t ime that  there  a re  wave  
equat ions  other  than  the usual  K l e i n - G o r d o n  or  Di rac  equa t ion  which  
descr ibe  a whole  spec t rum of par t ic les ,  and  it also was suspected  tha t  the 
di f ferent  types of  wave  equat ions  might  be  dynamica l l y  inequiva len t  once  
an  in te rac t ion  was tu rned  on. However ,  no ser ious a t t empts  have  been  
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made to determine the physical content of more general wave equations, 
and, except for only a few special cases, no explicit calculations of mass 
spectra, magnetic moments, form factors, and cross sections have been 
carried out for such theories, not even for those with only a finite number 
of components. By a (free) relativistic wave equation we shall mean in the 
following a set of first-order differential equations of the type (in units 
h = c = 1, and the metric 1, - 1, - 1, - 1) 

( -  + = 0 (1.1) 

Any free wave equation of higher order can always be brought into this 
form by introducing a suitable number of new components in the wave 
function; furthermore, this reduction can be accomplished without de- 
stroying the assumed manifest covariance of the theory. [Compare in this 
respect the Feshbach-Villars (Feshbach and Villars, 1958) and the 
Duff in-Kemmer-Pet iau  (Petiau, 1936; Duffin, 1938; Kemmer, 1939) 
first-order versions of the Kle in-Gordon equation.] The wave function 
~k(x) is assumed to transform locally under the Poincar6 group, 

qJ' ( X') = D(g)~J(X) (1.2) 

with x ' =  L(g)x  + a, and D(g) being a certain representation of the quan- 
tum mechanical restricted Lorentz group SL(2,C). [For no apparent 
reason space-time translations are usually represented trivially, i.e., D(a,g) 
= D(g).] The matrices fl~' and • are required to satisfy 

D - ' ( g )  fl~'D(g) = L( g)~',fl~ (1.3a) 

O - i ( g )  KD(g)  = K ( l .3b)  

The Dirac equation is certainly the best known and most successful 
example of such a wave equation, giving an accurate description of the 
properties of leptons. It never has been seriously investigated whether any 
of the more general wave equations (1.1) could be used for the phenome- 
nological description of the strongly interacting particles. 

At first it is quite surprising that after such a long time almost nothing 
is known about the physical content of these wave equations. This appears 
to be largely due to the peculiarities of the historical development. In the 
early thirties and forties, when there was general interest in relativistic 
wave equations and field theory, only a few fundamental particles were 
known. These particles were considered to be the elementary building 
blocks of matter, and it was natural to assume that only the most simple 
types of wave functions should be used for their theoretical description. In 
addition to this philosophical prejudice based on incomplete experimental 
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information, there were also technical difficulties: The multidimensional 
matrices fl~ and ~ appearing in such wave equations make explicit calcula- 
tions of even the most elementary physical observables quite difficult. As 
at that time there were no compelling reasons, based on experiment, for a 
thorough investigation of these general wave equations, only some of their 
more formal aspects have been studied (Corson, 1953; GArding, 1944; 
Gel'fand, Minlos, and Shapiro, 1963; Naimark, 1964). By and large, such 
theories were considered a mere mathematical curiosity and, as regards 
actual calculations of physical quantities, they were treated with benign 
neglect. On the other hand, in the fifties and sixties, when there occurred 
the dramatic increase of experimental information about the spectrum of 
fundamental particles and their properties, wave equations and field theory 
had fallen into temporary disrepute, and it was widely held that only a 
pure S-matrix theory would be capable of describing the interactions of 
the various fundamental particles. 

Today, as the solution of the universal, all-embracing bootstrap seems 
to be less imminent than it appeared a decade ago, field theoretical 
methods are coming into the forefront again. [With no claim to complete- 
ness, see the following references for a small sample of the numerous 
recent studies of more general wave equations and field theories: 
Joos (1962), Wichmann (1962), Weinberg (1964a, b; 1968), Pursey (1965), 
McKerrell (1966), Niederer and O'Raifeartaigh (1974a, b), Krajcik and 
Nieto (1977), l Singh and Hagen (1974a, b), Barut and Wilson (1976), 
Fischbach, Nieto, Primakoff, and Scott (1974a), Jenkins (1972a), Allcock 
(1975a, b), Allcock and Hall (1977, 1978), Shamaly and Capri (1972, 1973), 
and Hurley and Sudarshan (1974).] All our present experimental informa- 
tion indicates a rather complicated internal structure of the strongly 
interacting particles, in contrast to the leptons. Hence there is no longer 
any reason why only the most simple types of wave functions should be 
used for the field theoretical description of these particles. Whereas the 
Dirac equation gives an accurate account of the leptons but fails for the 
strongly interacting particles, it may very well be that certain more general 
wave equations can be used to describe the structure of the hadrons as 
observed in their electromagnetic and weak interactions. What is still 
missing for this purpose is a detailed and systematic investigation of the 
general wave equation (1.1) and its physical content. 

Recently, we have computed some simple physical observables for a 
large class of finite-component wave equations. We have found a practical 
way to determine the mass spectra of such wave equations (Biritz, 1975a); 

1This is the last of seven papers on the Bhabha equation; references to the earlier parts may 
be found in this article. 
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for a simple example see Biritz (1975b). For these wave equations we have 
also evaluated two important static observables sensitive to an internal 
structure, namely, the magnetic moments predicted for minimal coupling 
(Biritz, 1975a, c) and the renormalization of the axial-vector coupling 
constant in beta decay (Biritz, 1975d). We have found these equations to 
be dynamically inequivalent, and that the spin alone does not determine 
the physical properties of a particle described by such a wave equation. 
These properties do not only depend on the "type" of wave function 
employed, i.e., on its specific transformation law D(g) under the Lorentz 
group, but also on the details of the full mass spectrum of the wave 
equation. It has been said (Weinberg, 1964a, p. 1319) that "a free-field 
equation is nothing but an invariant record of which components are 
superfluous." This is not true. In general, all these wave equations describe 
not just a single particle but a whole spectrum of states with different 
masses, spins, and parities. All the states of such an equation are of equal 
importance and they cannot all be ignored save one, as their presence 
affects, even in lowest-order perturbation theory, the physical properties Of 
any particle in the spectrum. In view of the observed spectrum of hadrons 
and their excited states we consider this a blessing, not a curse; we do not 
try to project out a single state but we are deliberately looking for 
equations that describe more than one particle. What makes these equation 
so attractive is not so much the fact that they contain particles of higher 
spin but that they provide new, inequivalent descriptions for particles of 
spin zero and one-half. In particular, we obtained g factors significantly 
different from 2 even for minimal coupling (Biritz, 1975a, c), and also a 
nontrivial renormalization of the axial-vector coupling constant (Biritz, 
1975d). Hence such wave equations seem to offer the possibility of describ- 
ing in a phenomenological way particles with an internal structure like the 
proton, using as input the masses, spins, and parities of its excited states. 
Physically this seems to be quite plausible as we expect the interaction 
mechanism that gives rise to the nucleon resonances also to be responsible 
for the structure of the nucleon as observed in its electromagnetic and 
weak interactions. 

Up to now the wave equations corresponding to various particles were 
selected mainly on the basis of their mathematical simplicity, like least 
number of components of the wave function consistent with a given spin. 
This is not a very reasonable criterion: We have learned that the physical 
properties of a particle are not solely determined by its spin but also 
depend drastically on the type of wave function chosen, and on the full 
mass spectrum of the wave equation. The problem of describing interac- 
tions in relativistic field theory consists therefore not only of coupling 
various fields together in a Lorentz invariant way, but first, and perhaps 
most important of all, of selecting the correct type of wave function for a 



Consistent Wave Equallons 605 

given particle. This choice is ultimately determined by experiment and not 
by reasons of mathematical convenience; in addition to the spin of the 
particle we need further experimental information like the spectrum of its 
excited states. 

Besides being of obvious practical interest there are also purely 
theoretical reasons for a second look at more general wave equations. 
Beginning already with the very first papers on relativistic wave equations 
for particles of higher spin, several difficulties have been encountered. For 
example, the equations proposed by Dirac (1936) were shown to be 
inconsistent in the presence of a minimal electromagnetic coupling by 
Fierz and Pauli (1939). More recently, Schwinger (1963) noticed difficulties 
with the canonical quantization of theories with spin > 3/2. Johnson and 
Sudarshan (1961) pointed out that the canonically quantized Rarita- 
Schwinger and Bhabha fields for spin 3/2  no longer obey the proper 
anticommutation relations (i.e., zero at spacelike distances)when mini- 
mally coupled to an external electromagnetic field. Velo and Zwanziger 
(1969a, b) discovered that this difficulty already shows up in the corre- 
sponding c-number theory, independent of the quantization procedure 
employed. Among other examples they showed that the Rarita-Schwinger 
equation for spin 3 /2  becomes acausal for minimal coupling, no matter 
how weak the external field. There are also other types of instabilities. For 
a spin-3/2 particle in a constant magnetic field Seetharanam, Prab- 
hakaran, and Mathews (1975) found normal modes which cease to be real 
once the strength of the field exceeds a certain critical value. Wightman 
(1976) has demonstrated for two classes of wave equations that even with 
minimal coupling the ingoing and outgoing fields fail to satisfy the same 
commutation relations, and he has put forward the conjecture that there 
might not exist wave equations for spins higher than unity that are free of 
all inconsistencies. It will, however, become apparent that this assessment 
is too pessimistic. 

In recent years the interest in relativistic wave equations has mainly 
been focused on the instabilities mentioned above,.yet again only some 
very special examples of wave equations have been considered. We believe 
the time has come for a detailed study of more general equations (1.1), not 
only for a better physical understanding of these difficulties, but also, in 
the first place, for possible practical applications. From a pragmatic point 
of view these acausalities and instabilities are quite irrelevant for the 
investigation of the electromagnetic and weak structure of the particles 
described by such wave equations. All actual calculations of form factors, 
polarizabilities, structure functions, etc. can be based on standard per- 
turbation theory, i.e., on the Dyson expansion of the S matrix, and for this 
purpose it is sufficient to develop a consistent free field theory based on 
such wave equations. Of course it may very well be that none of these 
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more general wave equations has anything to do with the strongly interact- 
ing particles as observed in nature; in that case, however, we also would be 
much less perturbed by their pathological behavior, and we could write off 
these equations as being of mere academic interest. 

Here in this paper we want to investigate a large class of wave 
equations that appears to be most promising from both the theoretical and 
the practical points of view. We cannot expect every invariant wave 
equation (1.1) to be of interest in physics, and to prevent our investigation 
from degenerating into mere mathematics we have to impose certain 
restrictions on the class of wave equations to be considered. In view of the 
successful description of leptons offered by the Dirac equation, it is natural 
to look for a generalization of this theory. The Dirac equation is based on 
the following assumptions: 

I. The state of the system is described by a multicomponent wave 
function which transforms locally under the Poincar6 group, 
equation (1.2). 

II. The free wave function obeys an invariant wave equation of first 
order, equation (1.1). 

III. The wave equation describes one single particle (and its corre- 
sponding antiparticle); the solutions belonging to this single 
mass value p2= m 2 form a complete set. 

We do not want to give up postulates I and II. Considering the experimen- 
tally observed multiplet structure of hadrons and their excited states we are 
led to replace the last requirement by the following: 

III'. The wave equation describes a whole spectrum of particles (and 
their corresponding antiparticles); the solutions belonging to the 
various mass values p2= m 2 ~ 0 form a complete set. We further 
demand the masses m~ to be uniquely determined by the wave 
equation, i.e., by the matrices fl~' and ~. 

A wave equation is called "regular" if it satisfies the postulates I, II, 
and III' above. To us, this class of regular wave equations appears to be 
the natural starting point for the investigation of the most general wave 
equation (1.1): It is large enough to contain interesting physics yet free of 
unnecessary complications; regular wave equations will be shown to be 
quite remarkably well behaved indeed. Only very few of the wave equa- 
tions considered thus far are regular, especially none of the equations 
proposed for single particles of higher spin. It is characteristic of the wave 
equations (1.1) to describe more than one particle, and for all of these 
particles to be coupled by an interaction. In view of the observed multi- 
plets of hadrons we believe that also the full mass spectra of such wave 
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equations have to be taken seriously, and that we should not try to project 
out just one particular state. In our opinion the problem of a single particle 
with arbitrary spin is a purely academic one, as such particles do not exist 
in nature; all observed particles with higher spin are members of multiplets 
containing several particles with various masses and spins. 

At first we shall restrict ourselves to wave functions with only a finite 
number of components. This is a more technical assumption, the theory of 
the finite-dimensional representations of the Lorentz group being much 
simpler than that for infinite dimensions. Besides, infinite-component wave 
equations seem to pose some problems of their own, as witnessed by the 
invalidity of the spin statistics and CPT theorems for infinite-component 
fields (Bogolubov, Logunov, and Todorov, 1975). 

We can easily derive the mathematical conditions for a wave equation 
to be regular. The momentum space wave functions w(p, a 0 corresponding 
to particles with momentum p satisfy, together with their appropriately 
defined adjoint spinors ~(p, ae), the usual orthogonality relations 

~(cp, ac)fl ow(c'p, a'c') = cNa(p)~(a , ct') ~,~, (1.4a) 

Here ot stands for a set of indices that label the various solutions (see 
Section 3 below), and c---+_ 1 distinguishes the positive- and negative- 
frequency solutions. These orthogonality relations follow partly from the 
wave equation, and partly from the transformation properties of the 
spinors under the little-groups SU(2) or E(2). For a regular wave equation 
the norm N~(p) is always different from zero: Assuming N = 0  for a 
particular solution, the vector fl~ would then be orthogonal to all 
ff(cp, ac) that form a complete set. This would imply that flow=0; hence 
the energy and also the mass of this state would then simply be free 
parameters and would not be uniquely__determined by the wave equation, 
as originally required. We denote by ~Lf(p) the matrix having as rows all 
the spinors ff(ep, ae), and by ~f(p) the matrix consisting of all column 
vectors w(~p, ac). These matrices are nonsingular as the spinors w and 
form linearly independent sets. Equation (1.4a) can be written in matrix 
form as 

m 

~21((p)fl ~ = diag[ _+ N~(p) ], N~ 4:0 (1.4b) 

Hence flo nonsingular is a necessary condition for a wave equation to be 
regular. 

Here we want to consider only those regular wave equations where all 
the masses m~ are different from zero. For questions related to gauge 
invariance massless particles require special attention, and they will be 
discussed separately. In the rest frame of the particles we obtain from 
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(1.4b) with the help of the wave equation (p=0)  

~'~ffx ~l~ = diag( _+ m,~N,,) (1.40 

We deduce that d e t x ~ 0  is a necessary (and sufficient) condition for a 
regular wave equation to contain only massive particles. In this case we 
can multiply the wave equation by x- ]  and thus assume with no loss of 
generality that K= 1. [We observe that x commutes with D(g); therefore 
with fl~ also r - l f l~  transform like a vector.] 

Summing up, in this paper we want to study all finite-component 
wave equations of the type 

(" (1.5) 

with nonsingular flo. The mass spectrum of the wave equation is now 
determined by the inverse eigenvalues of r 0  and assumed to be real; with 
the unit matrix as the constant term in the wave equation we are explicitly 
excluding massless particles. The wave function and the fl matrices trans- 
form under the Lorentz group according to (1.2) and (1.3a). The basic 
theoretical entities q~(x), fir, and D(g) are only determined up to a 
common similarity transformation. We shall use this freedom to bring the 
transformation taw D(g) into the standard form described in Section 2 
below. This implies that in general we cannot impose any further condi- 
tions on the matrices fir. In particular, we shall assume neither that t 0  is 
Hermitian nor that there exists a hermitizing matrix ,/ such that ( f i r ) t _  
7/fl~0 -1, as is customarily done. [From the definition of regular wave 
equations it follows that t 0  is equivalent to a real diagonal matrix, and 
hence also to (fl0)t. This, however, is a weaker assumption, which in 
general does not entail the existence of a hermitizing matrix. For that also 
D(g-1)  t= 'qD(g)r l -  ] is necessary, but here we shah not require the trans- 
formation law D(g) to be pseudounitary.] Similarly, at first we shall not 
assume the wave equation to be manifestly covariant under parity, time 
reversal, or charge conjugation, which would impose additional limitations 
on the fir and D(g). We believe the general formalism of relativistic wave 
equations should be developed independently of these discrete transforma- 
tions (which are not even exact symmetries). From the theoretical point of 
view there is no actual need for any further restrictions, and we shall see 
that wave equations with quite general fir  and D(g) can be treated in a 
natural way. This not only has the procedural advantage that we can 
investigate a larger class of wave equations, but also, and perhaps even 
more importantly, in this way we avoid confounding the parity matrix with 
the metric operator in the definition of the adjoint wave function and the 
scalar product. 
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In Section 2 we describe a convenient realization of the matrices fl~ 
by means of Clebsch-Gordan coefficients of the rotation group. As we do 
not impose any particular algebra on the fl~ such an explicit expression is 
essential for all practical calculations. We evaluate the matrix elements of 
the fl~ between spin projectors in terms of Racah (6j) and 9j coefficients, 
using graphical techniques developed for angular momentum analysis. 
(These techniques are briefly summarized in Appendix A; in Appendix B 
we discuss a recursion formula for 9j symbols, correcting some unfortunate 
errors in the existing literature, and in Appendix C we list two particular 
Racah coefficients.) We further show that for every wave equation (1.1) 
there exists a matrix fls that anticommutes with all the fl~ and thus 
establishes a connection between particle and antiparticle solutions, even 
in theories without manifest C invariance. In Section 3 we construct a 
complete set of plane wave solutions and we describe a practical method 
for the determination of the mass spectrum. We define in Section 4 the 
adjoint wave function t~(x) needed for a conserved and Lorentz invariant 
scalar product with the usual properties; in contrast to standard procedure 
our ~k(x) is not simply ("locally") related to tpt(x). In Section 5, starting 
from elementary matrix algebra, we derive for any regular wave equation 
(1.5) its Klein-Gordon divisor, of which we give three different expres- 
sions, By means of this Klein-Gordon divisor all the invariant functions 
associated with a given regular wave equation can be simply related to the 
corresponding invariant functions belonging to a set of Klein-Gordon 
equations (Section 6). In particular, we present a much simplified proof 
that the so-called contact terms vanish identically for all regular wave 
equations. Section 7 is devoted to the discrete transformations P, T, and C. 
In Section 8 we discuss the quantum field theories based on regular wave 
equations. Whereas, of course, it is possible to construct a free quantum 
field theory for almost any free wave equation we emphasize in Section 8 
and in the following discussion (Section 9) the remarkably well-behaved 
nature of field theories based on regular wave equations. Although here we 
are only considering noninteracting theories, it will become apparent that 
regular wave equations are free of the worst instabilities and seem to offer 
the basis for consistent field theories of (multiplets of) particles with any 
spin. 

2. THE MATRICES ~ AND ~s 

In the case of the Dirac equation all calculations can be performed 
without a specific realization of the Dirac matrices, utilizing only their 
simple algebraic properties. There have been several attempts to obtain 
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new wave equations by suitable generalizations of the Dirac algebra. 2 We 
do not follow this purely algebraic approach: By postulating a certain 
algebra for the matrices fl~ only a small class of wave equations is selected, 
whereas we are here interested in a general and unbiased overall survey. At 
present there seems to be no fundamental reason for preferring one 
particular algebra to another; as higher dynamical symmetries appear to 
be only approximately realized in nature it is not evident why the matrices 
fl~ should have a simple algebraic structure at all. Besides, even such a 
simple generalization of the Dirac algebra as the DKP algebra (Fischbach, 
Louck, Nieto, and Scott, 1974b) is already quite intricate and makes 
practical calculations difficult. A convenient realization of the matrices fl~ 
is thus essential for any explicit calculations with more general wave 
equations (1.1). 

For the systematic classification and study of relativistic wave equa- 
tions we consider the "type" of the wave function to be given, i.e., its 
transformation law D(g) under the Lorentz group. The matrices fl~ corre- 
sponding to a given D(g) are then determined from their postulated vector 
character, D-1flJ'D=L~'~fl ~. The explicit expression for the fl~ is thus 
closely related to an appropriate standardization of the transformation law 
D(g). Every finite-dimensional representation of the Lorentz group is 
completely reducible (van der Waerden, 1932), and we may assume D(g) 
to be already given in completely reduced form, D(g)=Y. ~)Di(g), where 
the index i=  1,2 . . . . .  N denotes the various irreducible representation con- 
tained in D(g). (The same irreducible representation may occur more than 
once in this decomposition; thus it may be that D i= D k for iv~k). For the 
further standardization of the Di(g) we observe that all inequivalent, 
irreducible, finite-dimensional representations of the Lorentz group can be 

written as the direct product of two rotation matrices, DaB(g)= D'4(g)~ 
D S(g)t-1, A and B being any integers or half-integers, the dagger denoting 
the Hermitian conjugate matrix. Here DA(g) is the usual rotation matrix 
for angular momentum A [analytically continued from SU(2) to SL(2, C); 
for the relevant facts about the representations of SL(2,C) see, e.g., 
Wightman (1960)]. This standardization of the irreducible representations 
of SL(2,C) has the advantage that the decoupling coefficients for the 
Lorentz group are now simply products of two ordinary Clebsch-Gordan 
coefficients of the rotation group. 

Corresponding to this completely reduced form of D(g) we denote the 
rows and columns of fl~' according to the irreducible components i,k of 
D(g), each of which is characterized by a pair of angular momenta, 
i=(Ai, Bi) , k=(Ak, Bk). We subdivide the matrix fl~ into blocks of (2Ai+ 
1)(2BI+ 1)- by (2Ak+ 1)(2Bk+ 1)-dimensional rectangular matrices (fl~); 

2See, e.g., Chapter V of Corson (1953). 
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the elements within such a block are labeled by a pair of indices aib i, with 
- A i < a ~ ; A  i, - B i < b i < B  i, and a similar pair of column indices akb k. 
Using Schur's lemma, we immediately deduce from the required vector 
character of the/3 z, D-l/3ZD = L~/3 ~, that the block of matrix elements 
(/3~) connecting the ith with the kth irreducible component of D(g) is 
given, up to an arbitrary numerical factor, by a decoupling coefficient of 
the Lorentz group, that is, by a product of two Clebsch-Gordan 
coefficients of the rotation group (Lyubarskii, 1960): 

(/3i~,)~,o,; ~,b ~ - -  - b ik  [ (2A i + 1)(2B k + 1) ] - ' /2(o") ,~ ,  

1 I t 
(AiailT"rAkak)( Bibi~'r IBkbk) 

(2.1) 

Here the b, k are arbitrary complex parameters, and we have chosen the 
sign and the other numerical factors to obtain a simple graphical repre- 
sentation of these matrices (see Figure 1). This choice entails, among other 
things, a simple expression for the reduced mass matrix A(s), equations 
(2.4) and (2.5) below. The o~---(1,o) are the usual Pauli matrices which 
transform between Cartesian and spherical vector components, and there 
is a summation over the double indices r and ~-' with values __. 1/2. With 
this realization of the /3 ~ all the algebraic problems encountered in the 
study of the general wave equation (1.1) are now reduced to problems of 
angular momentum analysis; for these powerful and elegant graphical 
techniques have been developed (Yutsis, Levinson, and Vanagas, 1962; 
E1-Baz and Castel, 1972) which make actual calculations with more general 
wave equations manageable. 

A k 

r�89 

'/2 

- Bk 

Fig. 1. Graphical representation for the block of matrix elements (fl~). As explained in 
Appendix A, each vertex corresponds to a Clebsch-Gordan coefficient. 
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We observe that the transformation law D(g)  necessarily has to be 
reducible. For a vector fl~ to exist, D(g)  has to contain at least one pair of 
"interlocking" (or "linked") irreducible components  i, k satisfying A i = At, 
_ 1/2, and, independently, B i - - B  k + 1/2, i.e., the representation i = (A i, Bi) 
is contained in the direct product  1 (Ag,Bk)| ~). The only nonvanishing 
matrix elements of fl~ are those blocks (fl~) connecting two interlocking 
representations i and k. In Figures 2a -2 f  we present some examples of the 
linkage diagrams of the most  common  wave equations. There each point in 
the (A, B) plane represents a certain irreducible component  D i(g), and a 
line joining two such points corresponds to a nonvanishing linkage 
parameter  b~k. For a given transformation law D(g)  the matrices f i t  are 

B 

1/2 1/2 

t72 A 1/2 

6 

1/2 

1/2 1 

r 

O 
d 

<5 
e 

Fig. 2. Linkage diagrams for some common wave equations: (a) Dirac equation. Co) Duffin, 
Kemmer, Petiau spin 0. (c) Proca equation; Duffin, Kemmer, Petian spin 1. (d) Fierz-Pauli 
spin 3/2. (e) Rarita-Schwinger equation corresponding to the direct product of the Dirac 
representation with the representation (n/2,n/2). (f) Bhabha equation; there the irreducible 
representations fill a rectangle of any size, depending on the particular representation of so(5). 
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not uniquely determined: There is a free parameter bik for each interlock- 
ing pair i, k of irreducible representations, reflecting some flexibility in the 
masses (and parities) of the states which can be accommodated by a given 
type of wave function. Postulating a certain algebra for the fl~ not only 
restricts the type of the wave function, i.e., its transformation law D(g),  
but also implies, for better or worse, a definite choice of the parameters bik 
and hence a uniquely determined mass spectrum. Unfortunately most of 
the wave equations studied by algebraic techniques suffer from a rather 
unphysical mass spectrum, like decreasing mass values for increasing spin. 
Here we do not assume the matrices fl~ to obey any particular algebra and 
we treat the b;~ as arbitrary free parameters (which in principle can be 
determined from a given mass spectrum). 

Equation (2.1) and Figure 1 express the vector character of the 
matrices fl ~ under Lorentz transformations. A physically more useful 
realization of the fl ~ is obtained by recoupling certain angular momenta in 
Figure 1. This is most easily done in the case of the matrix 13 0 (see Figure 
3). Introducing the completeness relation of Appendix A, equation (A.8), 
for the AkB * lines, we can then contract the ensuing triangle of internal 
lines to a point, obtaining a Racah coefficient according to equation (A.9). 
W4 find it convenient to introduce the spin projectors Xi(so), a set of 
(2A i + 1)(2Bi + 1)-dimensional column vectors; their components are 
labeled by the pair of indices a~b~ a n d  are given by the Clebsch-Gordan 
coefficient 

[ X i( so ) ] a,b, "~ <AiaiBibi130 > (2.2a) 

Similarly we define the corresponding adjoint row vectors Xit(so) 

[ xit(So) ] a,b, = <salAiaiBibi> (2.2b) 

These spin projectors Xi(SO) form a complete and orthonormal set of 
vectors in the (2A;+ 1)(2Bi+ 1)-dimensional space associated with the 
irreducible representation Di( g), i=(Ai ,  Bi): 

E X,(SO) | = 1, (2.3a) 
SIT 

z = G ,  aoo, (2.3b) 

i fixed, and where li denotes the unit matrix in that space. 
In terms of these spin projectors we can now write for the blocks of 

matrix elements of fl o 

(Zo) = y. (2.4) 
s a  
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A i  

Bi  

Fig. 3. Recoupling of the AgB k fines of (fli ~ with the help of the comPleteness relation (A.8) 
defined in Appendix A. 

where we have suppressed the magnetic quantum numbers aibi;akbk. The 
coefficients Aik(S ) are proportional to a Racah coefficient, 

A~k(S)=b~k(_l),~{ AiBk AkB i ~S)l (2.5) 

1 [the overall phase of Aik(S) is actually with the phase �9 = A i + B k + s + -~ 
independent of s]; the big are the free parameters contained in the matrices 
fl~ according to (2.1). Using the orthogonality and completeness relations 
of the spin projectors we get 

( flo)x k(so) = A,k(s)x i(sa) (2.6a) 

x/ t (so)(  fli O) ..~ A i k ( s ) X ~ ( S a  ) (2.6b) 

We note that the last equation follows without any hermiticity require- 
ments on the matrix rio. We shall find in Section 3 that the spin projectors 
Xi(s) are also the fundamental building blocks for the spinors describing 
particles of spin s at rest, and that the mass spectrum of the wave equation 
can be simply determined from the Aik(s ) [see (3.20) below]. 

The evaluation of the general matrix elements Xit(sa)(fl~)Xk(s'o'), 
sketched in Figure 4, is only slightly more involved. We introduce the 

slight rearrange- completeness relation for the internal j =  i lines; after a 
merit we obtain the graph shown in Figure 5. According to Appendix A, 
equation (A.10), the matrix elements can then be immediately identified 
with a 9j symbol times a Clebsch-Gordan coefficient. Following the 
convention of Schwinger (1952) for the reduced matrix elements we find 
(i,k fixed; we suppress a sum over the magnetic quantum numbers aib i and 
akbk): 

s'o') -- , 

+ (1 _ (2 .7 )  
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M 

Fig. 4, Graphical expression for the matrix elements of fl~ between spin projectors, equation 
(2.7). 

,,_ '/2/ \ l 

r - 1/1 

'/2 
Fig. 5. After rearranging some lines in Figure 4 and using the completeness relation (A,8) for 
thejffi 1/2 lines, the ensuing graph is immediately identified with a 9j symbol, as defined in 
(A.10) of Appendix A. 

with the reduced matrix elements being proportional to a 9j symbol, 

Ai ~ Ak 
(r) , l ] 1/2 1 Aik (S's )~  bik[ 2 'r's's'J t Bi 2 

1" 

(2.8) 

r--  0,1. There we have introduced the abbreviation [j, l ,s, . . .  ] ffi (2j + 1)(2l + 
1)(2s + 1 ) . . . .  In the "mixed" Clebsch-Gordan coefficient of (2.7) # de- 
notes the Cartesian vector indices, i.e.; (solt~[s'o'> = (solpls'o'> Vp~, where 
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V is the usual similarity transformation connecting Cartesian and spherical 
vector indices (/~ = 1,2, 3; p = + 1,0). For r---0 we have 

(0) , Aik ($ ,X)  = ~ss,[ S] I/2hik(3' ) (2.9) 

Further useful relations can be derived from the commutation rela- 
tions of the fl~ with the generators fW of the Lorentz group, D(g)=  
exp[-  (i/2)to. ~1, 

= a-B (2.1o) 

characteristic of any 4-vector; G is the metric tensor ( 1 , -  1 , -  1 , -  1). In 
particular we obtain for the generators j=(~23, ~31, f~12) of rotations, and 
K = (fl01, ~02, f]03) of boosts 

[d, fl~ =0 (2.1 la) 

i[K, fl ~ =18 (2.1 lb) 

[ JP,)~q] = i~qr~ r (2. l lc) 

i[ KP,)~ q ] = 6pqfl 0 (2.1 ld )  

Not all of these commutation relations are independent of each other. 
Starting from a matrix fl0 satisfying (2.1 la), the second equation (2.1 lb) 
may serve as the definition of the corresponding matrices ft. Of the other 
equations we only have to satisfy (2.1 l d) for one particular nonvanishing 
commutator, say for p = q=3. All the remaining commutation relations 
then simply follow from a repeated application of the Jacobi identity. 
Hence the necessary and sufficient condition for the matrix B ~ satisfying 
(2.1 la), to generate a four-vector fl~ via (2.1 lb) is 

-[  K3,[ K3,fl~176 (2.12) 

This self-consistency condition for the matrix 8 ~ is easily understood: 
equation (2.12) together with (2.11b) are the obvious requirements for 
D -1[b3(~)] fl~ = fl~ f13 sinh~ to hold. 

In our standardization of D(g) and its irreducible components the 
generators J and K have a simple expression. For the irreducible repre- 
sentation Dan(g) we find 

jan _ j a  |  1A |  (2.13a) 

iK~n = j a  | n _  I a |  (2.13b) 



Consistent Wave Equations 617 

where jA are the standard angular momentum matrices belonging to 
angular momentum A. In the following we shall simply write (A) for 
jA | s, and similarly (B) for 1A @jB. From the above equations we obtain 
various relations between the/3" and angular momentum matrices. From 
(2.1 lb) we deduce for the blocks of matrix dements of the 18 

(~k) = 2 [ (A)( flo)_(flO)(A) ] (2.14a) 

o r  

= - 2[ ] (2.14b) 

To further simplify the notation we have dropped the indices i ,k  on the 
angular momentum matrices; the irreducible representations to which 
these matrice.s belong are uniquely determined by the order in which the 
various matrices occur. Thus, an angular momentum matrix to the left of 
the block (fli~ belongs to the representation Di; for example, (A)(fli ~ 
stands for the product (JA'|176 and similarly (fl~ means 
(fliO)(1Ak| The above relations trivially follow from our graphical 
representation of the matrices/3" as given in Figure 1. We only have to use 
that ~r= 2J(1/2), and the simple rules for the shifting of angular momentum 
matrices along the lines of a Clebsch-Gordan coefficient, as derived in 
Appendix A, equation (A.5). 

Taking the matrix elements of (2.14a) between the spin projectors 
)rt(s) and X,(s'), we arrive at a relation between the corresponding reduced 
matrix elements: 

A!~)(s ,s ' )--2[Ai(s ,s ' )A, l , (s ' )-A,k(S)Ak(S,S')]  (2.15) 

The Ai(s,s' ) are the reduced matrix elements of the angular momentum 
matrices (Ai) in the basis of the spin projectors, 

X~t(se)(Aq)X,(S' O')=A,(s ,s ' )[  s ' . �9 ] - ' / 2 ( so lq l s '  o ' )  (2.16a) 

s 1 s ' )  
Ai(s 's ' ) - - ' ( -1)a '+s'+*[s 's '] ' /Z(A' l lJ l lAi)  A, B i A, (2.16b) 

with the usual (A IIJIIA)= [A(A + 1)(2A + 1)] 1/2. Equation (2.15) constitutes 
a recursion formula relating the 9j symbols occurring in (2.8) with r = 1 to 
the corresponding 9j symbols with r=0,  i.e., Racah coefficients. As this 
appears to be a new type of recursion relation, and as there are some 
unfortunate errors in the tables of 9j symbols of even recently published 
books, we discuss this and similar relations in more detail in Appendix B. 
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From the commutators of the 8 q with the generators K p, p,q- -1 ,2 ,3 ,  
equation (2.1 ld), we derive that 

8pq( fli~ i~qr( fl[k)=2[ (AP)( fl~)-( fl~)(AP) ] (2.17a) 

This equation is the direct generalization of the well-known relation 
OpOq= 8pq+ iepqrtr r satisfied by the Pauli matrices. In fact, (2.17a) at once 
follows from this property of the o and the identity expressed in equation 
(A.5) for the angular momentum matrices. For p - q  we obtain, similar to 
(2.14a), 

( 8 ~ ) = 2 { - } (2.17b) 

p not summed. From (2.14a) and (2.17b) [or directly from (2.12)] we 
deduce the identity (p fixed) 

( 8 ~ ~ 1 7 6 1 7 6 1 7 6  ] (2.!8) 

which is the necessary and sufficient condition for generating a 4-vector 8 ~' 
from the matrix fl ~ This last equation entails a sum rule for the Racah 
coefficients appearing in the reduced matrix elements A~k(S ), equation 
(2.5), which here we do not need to spell out in more detail. 

With our explicit realization of the matrices fl ~' it is now straightfor- 
ward to compute their various products and commutators. We do not see 
much point in studying the algebra generated by the fl~'; simple algebraic 
relations will only hold for some particular D(g),  and even then only for 
special values of the linkage parameters bik. For all practical purposes we 
found the graphical expression of the 8 ~' more convenient than some ad 
hoc algebra postulated fo r the fir. 

The analog of the Dirac matrix 75 has a particularly simple expression 
in our realization of the 8 ~'. We define the diagonal matrix fls(= 8 5) in 
terms of its blocks of matrix elements (8~) as 

(fli~) = ( - 1)2A'Sik 1, (2.19) 

where li denotes the (2Ai + 1)(2B; + D-dimensional unit matrix. [In passing 
we note the difference between the symbols 8~k and 8(Ai,Ak)8(B i, Bk).] 85 is 
Hermitian and unitary as 

(85)2=1 (2.20) 

f15 commutes with all Lorentz transformations, 

~sD(g) -- D( g)85 (2.21) 
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whereas it anticommutes with all the fl~', 
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f15 fl~ = - fl ~f15 (2.22) 

(Bsfl~flS)ik=(--1)2a'+z~(fli~)=--(fl~) as the only nonvanishing matrix 
elements of (fig) are those where i and k are interlocked, i.e., where 
A=Ak+ 1 

- - 2 "  

Evidently this matrix f15 always exists without any further restrictions 
on the fl~ or the transformation law D(g). By means of f15 we will obtain a 
direct connection between the particle and antiparticle solutions of the 
general wave equation, even without postulating the wave equation to be 
manifestly covariant under charge conjugation. 

3. MASS SPECTRUM, COMPLETE SET OF PLANE WAVE 
SOLUTIONS 

Before we begin with the actual construction of a complete set of 
solutions of the free wave equation (1.5), we want to briefly review the 
kinematical aspects of free particles with arbitrary spin in a manner that 
does not depend on the particular choice of the wave function, utilizing 
only general invariance arguments. This is done not only to introduce our 
notation and normalization conventions, but, primarily, since by such 
techniques we will construct and interpret the various solutions of the free 
wave equation. 

The quantum mechanical symmetry operators that correspond to the 
elements of the restricted Poincar6 group (no reflections) can be chosen 
(Wigner, 1939), within each coherent subspace, to form a unitary repre- 
sentation of ISL(2, C). We label the elements of this group by (a,g), where 
a denotes the space-time translation by the 4-vector a t, and g is an 
element of SL(2, C). The symmetry operators are normalized to satisfy the 
group property 

U(a,,gl) U(a2,g2) = U(al + Lla2,g , g2) (3.1) 

Here L 1 is the Lorentz transformation corresponding to the elements gl of 
SL(2, C); we write for this homomorphism 

L(g) L = �89 Vr(  go.g*) (3.2) 

the dagger denoting the Hermitian conjugate. The o r are again the usual 
set of Pauli matrices, and 6~'=P~'~o'=(1,-er), P~' being the parity 
matrix. The U(a,g) relate the quantum mechanical descriptions of diffe- 
rent inertial frames, or, in the active interpretation, describe the behavior 
of the system under active Lorentz transformations; thus all the informa- 
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tion about the relativistic kinematics of free particles with any spin is 
already contained in (3.1). 

By definition, the state vectors [so) which describe a massive particle 
of spin s at rest transform under rotations r E SU(2) according to 

U( r)lso ) = Iso') DS( r)o, o (3,3) 

with D~(r) the usual rotation matrix, and a sum over double indices. We 
obtain the states [pso) for the particle in motion by applying active 
Lorentz transformations to the states at rest. We define the standard states 
[pso) corresponding to a particle with energy-momentum p =(E,p)  as 

[pso ) = U([ p ])lso ) (3~ 

Here [p] E SL(2, C) is a boost that brings the particle from rest to the 
4-momentum p, i.e., for which L([p])p~ =p, p~ = (m, 0, 0, 0). From equations 
(3.1), (3.3), and (3.4) we obtain the well-known transformation law of the 
states Ipso) under arbitrary Lorentz transformations 

U(a)lPso ) = e ip'a [pso ) 

U( g)lPso ) = [p' so') D'[ W( g,p) ]o. ~ 

with p'= L(g)p, and the Wigner rotation 

W( g,p)= [ p '] - lg[  p ] 

(3.5a) 

(3.5b) 

Equation (3.4) implies a relativistic normalization of the states which we 
chose to be 

and 

(pso]p's'o') = 2g(p) 8 ( p -  p') 8.~,~oo, (3.5d) 

E ~ ) - - + 0 2 +  m2) 1/2. Due to the kinematic spin rotation (3.5c) the physical 
significance of the polarization index o depends on the particular choice of 
the boost [p], which is only determined up to an arbitrary rotation. The 
two most commonly used boosts are 

[ P]s = r(p)b3(~)r-I(p) 

[ P ] h = r(p)b3(~ ) (3.6b) 

In these formulas r(p) means a rotation that brings the positive z axis into 

(3.6a) 

(3.5c) 
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the direction of the momentum p; b3(~ ) is a pure Lorentz transformation 
in the direction of the positive z axis with the rapidity ~ given by 
cosh~-- E / m .  For the boost [PL, o has the physical significance of the z 
component of the spin, o = s~; we denote the corresponding "covariant spin 
states" by [pss~). The boost [P]h generates the helicity states Ipsh), where 
o = h measures the component of the spin in the direction of motion. 

The operator U e representing space inversion can be chosen to be 
unitary (Wigner, 1965); within a coherent subspace it can be normalized to 

U2=1 (3.7a) 

With the elements of the restricted Poincar6 group the operator U e 
satisfies the group multiplication 

U i  1U(a,g) Ue = U(&ff) (3.7b) 

The parity-transformed elements (a,~) of ISL(2, C) are given by 

~t -- Pa = (a ~ - a), ~ = g , -  l (3.7c) 

where by definition L(g)  = PL( g)P - 1 
It follows from (3.7b) that the states 

V , I~o ,  > 0 ~( [ f i] t[  P])O'o (3.8a) 

/~= ( E , -  p), transform under the restricted Poincar6 group in exactly the 
same way as the states Ipso). [We note that [p]t[p] ~ SU(2).] Assuming no 
doubling of states we deduce that 

V lpso > = > D'([ p ])o,o (3.8b) 

with the intrinsic parity ~e = +-- 1. In particular, we find for the covariant 
spin states that [fi]tAP],--1 and therefore 

Up l pssz > = ~le[ fissz > (3.9) 

We obtain for the helicity states 

[ fi] ~[ p ] ,  = r -  l(fi)r(p) = r3(~)r f l(~r) (3.10) 

The so-defined rotation r3(~ ) about the third axis depends on the further 
standardization of the rotation r(p) which brings the z axis into the 
direction of the momentum p, r(p) being only determined up to a rotation 
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around the z axis. Following Wigner (1959) we denote the matrices 
DS[r2(cr)] by CS; they have the matrix elements 

C~o, = De[ r2(~r) ] oo, = ( - 1 f + ~ -o' (3.1 la) 

The importance of the matrices C e stems from the fact that they relate the 
representation D~(r) of SU(2) to its complex conjugate, 

De(r) * = CeDe(r)( CS) - ' ,  

The real matrices C e are unitary and satisfy 

( C S ) 2 = ( -  1) 2e 

r~SU(2)  (3.11b) 

(3.1 lc) 

For s =  1/2 we shall simply write C for C 1/2, i.e., C =  c l / 2 - - r 2 ( q r )  = - i a y .  

Combining (3.8b), (3.10), and (3.1 l a) we find for the transformation law of 
the helicity states under parity 

U p I p s h  ) = TIp ( -- 1)S+heih~'lfi,  s , --  h )  (3.12) 

where the phase angle r = ~(p)  is determined from (3.10). 
Finally, time reversal can be represented by an antiunitary operator 

A r (Wigner, i965) which within a coherent subspace can be normalized to 

A~. = erl (3.13a) 

cr = --- 1 being a real phase factor. The operator A r satisfies the following 
group multiplication with the operators U(a,g) of the restricted Poincar~ 
group: 

A~ 1U( a,g)Ar= U ( -  ~,g) (3.13b) 

where again a = (a ~ - a) and g = g*- 1 [equation (3.7c)]. The states 

At ( [ f i so ' )  O ' ( [  fi ] t[  p ] C)o,~ } (3.14a) 

transform under the restricted Poincar6 group in exactly the same way a s  
the states [pso), the C matrix in (3.14a) reflecting the antiunitarity of A r. 
Assuming no doubling of states we find 

ArlPso ) = rlrlfiso') De([ fi]*[ p ] C),,,o (3.14b) 

For the covariant spin and the helicity states we obtain the transformation 
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Arlpssz5 -'- ~r( - 1)~- sz[/~, s, - sz5 

Ar[psh ) = TiTe--ih~lfish ) 

(3.15a) 

(3.15b) 

the phase angle r being again determined from (3.10). Independently of 
the special choice of the standard states Ipso) it directly follows from 
(3.14b) that for a particle of spin s 

A~=  ( -  1)2~1 (3.16) 

The solutions of relativistic wave equations offer a concrete realization 
of the abstract state vectors considered above, and these general invariance 
arguments can be used quite literally t o  construct a complete set of 
solutions of the free wave equation (1.5): We first have to obtain the wave 
functions describing particles at rest, and then boost to arbitrary momen- 
tum. With our standardization of the wave equation (1.5) its mass 
spectrum is determined by the inverse eigenvalues of fl0; for a regular 
wave equation t 0  is assumed to have a complete set of eigenvectors 
belonging to real and nonvanishing eigenvalues. We call u(a) the eigenvec- 
tors to positive eigenvalues X~ = 1 /m a of fl 0, 

"fl~ = ~,=u(a), h, > 0 (3.17a) 

Here a stands for a triplet of indices to distinguish the various eigenvec- 
tors, a = (sop): s and o denote the spin and its z component, and p is a 
degeneracy parameter to label different states with the same spin. The 
matrix t5 defined in (2.19) anticommutes with /3~ hence there exists to 
every u(a) a corresponding spinor v(a) belonging to the negative eigen- 
value - h , :  

v(a)  =  5u(a) (3.17b) 

# = -Xov( ) (3.17c) 

All the u(a) together with the v(a) form a complete set. 
The actual determination of the mass spectrum of a given wave 

equation can be greatly simplified with the help of our explicit expression 
of the matrix/3 0. By definition, to describe a particle of spin s at rest, the 
spinors u(a) have to transform under rotations r ~ SU(2) as required by 
(3.3), 

D(r)u(sop)-- u(so' o)D~(r).,o (3.18a) 
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where D(r) is the given transformation law of the wave function, equation 
(1.2). In accordance with the assumed decomposition of D(g) into a direct 
sum of irreducible representations D i(g), i = 1,2 . . . . .  N, and with arranging 
the matrix elements of fl~ into the block s (fl~), we break up the spinors 
u(a) into (2A i + 1)(2Bi + 1)-component column vectors ui(a ), labeling their 
components by the pair of indices aibi, - A  i <~a i <Ai, - B  i <~b i <B i. From 
(3.18a) these column vectors ui(a ) transform under rotations as 

Di(r)ui(sop) = ui(so' p)D~(r)o,. (3.18b) 

i not summed. Utilizing that for rotations Di(r) is simply the direct 
product of the two rotation matrices DA'(r) and DS'(r), we at once obtain 
from Schur's lemma that the components of u~(a) are given, up to a 
constant factor, by the spin projectors Xi(SO) introduced in (2.2a): 

u,(sop) = (3.19) 

The constants xi(sp) are determined by the eigenvalue equation fl~ 
h~u(a). Combining (3.19) with (2.6a) for the effect of the (fli ~ on the spin 
projectors Xk(S) we find that the eigenvalue problem of fl0 can be reduced, 
for each value of the spin s, to an eigenvalue problem of a corresponding 
N-dimensional matrix A(s), N being the number of irreducible representa- 
tions contained in the transformation law D(g) of the wave function: 

N 

Aik( s)xk( sp) = ~ x i (  sP) (3.20) 
k = l  

As already familiar from the atomic and nuclear shell models, the depen- 
dence on the magnetic quantum numbers o, ai, b i .... can be completely 
factored out of the dynamical equations; only the magnitude of the spin s 
and the other angular momenta A i, B i . . . .  involved enter in the form of 6j 
symbols or higher recoupling coefficients. We call A(s) the "reduced mass 
matrix"; it acts on the "reduced wave function" x(a) with the N compo- 
nents xi(a) [We remember that x(a) is, of course, independent of o]. 

For the matrix element A~k(s ) to be different from zero (i.e., the Racah 
coefficient in (2.5)], four triplets of angular momenta have to satisfy the 
triangle inequality: the two triplets (Ai,A k, �89 and (Bj, B k, �89 for the repre- 
sentations to be interlocking, and the two triplets (At, Bi, s ) and (Ak, Bk, s ) 
demanding ttie spin s to occur in the SU(2) decomposition of both 
irreducible representations D i and D k of SL(2, C). By a similar argument 
at least two components x~(et) have to be nonvanishing to obtain a 
nontrivial eigenvector of the reduced mass matrix. Hence for a particle of 
spin s and finite mass to occur in the spectrum of a regular wave equation, 
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the spin s has to be contained in the SU(2) decomposition of at least two 
representations i and k. The matrix f15 being diagonal, there is a simple 
relationship between the reduced wave functions x(a) and y(a) belonging 
to positive and negative eigenvalues +__ h a of A(s). Assume 

then 

A(s)x(a) = X.x(a) (3.21a) 

with 

A(s)y(a) = -hoT(a ) (3.21b) 

y,(a) = ( -  1)2a'xi(a), i=  1,2 . . . . .  N (3.21c) 

The matrix elements Aik(s) are continuous functions of s [see (2.5) and 
the formulas (C.1) and (C.2) of Appendix C], provided we also define a 
suitable continuous generalization of the A(ABs) expressing the triangle 
inequality; we recall that the phases of the Aig(s ) are independent of s. 
Hence the above eigenvalue equation can trivially be extended to arbitrary 
real values of the parameter s, and also the eigenvalues Xo(s ) will be real 
continuous functions of s. In this way the eigenvalue spectrum of fl 0 can 
naturally be subdivided into various branches which we label by the index 
p. We note that the functions h0(s ) will in general neither be strictly 
positive nor negative definite, i.e., Xo(s) may cross over from positive to 
negative values and vice versa. (For regular wave equations fl 0 is nonsingu- 
lar and therefore X=0 can only occur for unphysical values of s.) The 
masses m~=l/h~=l/Ihp(s)l>O of the particles described by the wave 
equation can then also be arranged into corresponding branches, and 
analogously for the antiparticles; these branches of the mass spectrum will 
have infinities whenever X0(s ) passes through zero. Qualitatively, the mass 
spectrum of a wave equation containing N irreducible components in its 
transformation law D(g) consists of N/2 positive branches of finite length 
plus the corresponding antiparticles. (For odd N the wave equation is 
always nonregular with at least one branch of the mass spectrum at infinity 
corresponding to vanishing eigenvalues of fl0). The various branches may 
overlap; some of them may have infinities. The spin dependence within 
one branch is determined by a certain function of Racah coefficients. [For 
simple examples of mass spectra see Biritz (1975b).] For N = 2  the spin 
dependence of the mass spectrum is rigidly determined by a single Racah 
coefficient: There is only one free parameter in the theory, the product of 
the linkage parameters bl2b2p which may be chosen to arbitrarily fix one 
mass of the spectrum; all the other mass values are then uniquely de- 
termined. We find two qualitatively different types of wave equations with 
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N = 2 :  
TypeI: 1 + 3, B + �89 leads to a mass spectrum that is 

increasing with spin, whereas 
Type II: 1 (A,B),  2- - (A 1 1 = + ~ , B - ~ )  gives a decreasing mass 

spectrum. 
[These two types of wave equations are found to differ also in other 
physical properties such as magnetic moments or the renormalization of 
the axial vector coupling constants (Biritz, 1975c, d).] The aversion against 
more general wave equations may partly stem from the unfortunate fact 
that only wave equations with rather unrealistic mass spectra have been 
considered up to now. For N > 2 there is a greater flexibility in the mass 
spectrum. Varying the free parameters bik corresponding to each linked 
pair of representations i and k in the fl matrices, we can to a large extent 
influence the shape of the mass spectrum. The bik are in general overde- 
termined by the mass spectrum, i.e., there are in general more states in the 
theory than there are free parameters; hence not every arbitrarily given 
mass spectrum can be fitted by a given type of wave equation [note the 
self-consistency condition (2.12) on the matrix to].  

For every eigenvector u(a) of fl o there exists a corresponding reduced 
wave function x(a) which is an eigenvector of the reduced mass matrix 
A(s) belonging to the same eigenvalue ~ .  The reverse is not always true. 
The N-dimensional matrix A(s) may have up to N nontrivial and linearly 
independent eigenvectors x(a),y(a); however, not all of them necessarily 
lead to nontrivial and linearly independent eigenvectors u(a),v(a) of/30 as 
some or all of the spin projectors X~(S) in (3.19) may be identically zero. 
Physically, /3~ need not exactly have N states for every spin value in its 
spectrum as the various branches of its mass spectrum may start and end 
at different spin values. This does not cause any problems as we can 
always choose a suitable basis of reduced wave functions x(a),y(a) such 
that the supernumerary, i.e., linearly dependent vectors u(oO, v(a) vanish 
identically. 

Having solved the momentum space wave equation in the rest frame, 
we obtain the spinors u(pa) describing particles in motion by applying the 
boosts [pa]. We define 

u(pa) = N~D( [ pa ]) u( a) (3.22a) 

and 

v(pa) = N,~D([ pa])v(a) = flsu(pa) (3.22b) 

where N~ is a normalization factor to be chosen below. Of course, the 
boosts [pal depend on the masses rn~ since, for a given momentum, p 
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particles with different masses move with different velocities. The rapidity 
~ of the particular boost employed in (3.22a) and (3.22b) is determined 
by sinh~--lPl/m~, or cosh ~,~ = E,~ / m,~, with E,~ ~ ) = + (p2 + m2) 1/ 2. "l"he . 
so-defined spinors satisfy the appropriate wave equation in momentum 
space: We write the eigenvalue equation (3.17a) as mc, fl~ u(a), or 
fl~,(~,pr)~u(a) = u(a), ~pr = (m,,0, 0, 0) being the four-momentum of the par- 
title at rest. Applying the boost D([pa]) on both sides of the equation and 
using the transformation properties of the fl matrices, also that by defini- 
tion L([pct])~, =~0 = (E~, p), we obtain the wave equation 

( d g - 1 ) u ( p a ) = O  (3.23a) 

with tr ~'. Similarly the spinors v(pa) are found to obey the wave 
equation 

(,de+ 1)v(pa) = 0 (3.23b) 

Finally, we define the wave functions in coordinate space 

f+  (xlpa) = u(pa)exp( -  ip.x) 

f_  (x Ipa) = v(pot)exp( + ip.x) 

(3.24a) 

(3.24b) 

for simplicity we have suppressed the index a in p = ~p. All these plane 
wave functions f_+ are solutions of the wave equation (1.5), 

( - i9'+ 1)f• (xlp~) ffi 0 (3.24c) 

The corresponding orthogonality and completeness relations will be 
studied in the next section. 

These wave functions have under the Poincar6 group the transforma- 
tion properties (3.5a)-(3.5c) characteristic of particles with mass + m,~ and 
spin s. We define the operators Ta,g representing (active) Poincar6 transfor- 
mations (a,g) as 

D( (3.25) 

where x ' =  L(g)x  + a. The plane waves f_  are then found to transform 
under translations as 

T j •  (xlpa) = exp( _ ip.a)f+_ (xlPa) 

for Lorentz transformations we obtain 

(3.26a) 

Ts.f• =f+(xlp 'so 'o)D'[  W(g,pct)]o,,, (3.26b) 
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wi thp ' -L (g )p ,  the usual Wigner rotation W(g,pa)=[p'a]-lg[pa], and a 
sum over the double index o'. The physical significance of the polarization 
index o again depends on the particular type of boost employed. 

We emphasize that in the last equation the spin s and the degeneracy 
parameter p are not transformed. Repeatedly the objection has been raised 
that "the traditional method of solving the equation in the rest frame and 
then boosting to arbitrary momentum may not be applicable to multimass, 
multispin equations" as, so the saying goes, "the boosts may mix the 
various spins." This argument seems to be based on an unwarranted 
analogy with the "nonrelativistic" (i.e., Galilean-relativistic) Pauli spin 
theory. It is certainly true that a Lorentz transformation D(g) will mix the 
spin projectors. For example, if we expand the wave function ui(pa ) in 
terms of the spin projectors Xi(SO) referring to the rest frame, in general all 
the different angular momenta contained in the SU(2) decomposition of 
D i will contribute, 

ui(psop) = y ,  ci(PSOls')xi(s'  o ) (3.27) 
S r 

i fixed; only in the limit p~0  do we find the c i to be proportional to 8ss'- 
However, this has to be so: If Lorentz transformations would not mix the 
spin projectors Xi(s), we would be able to completely separate the momen- 
tum and spin dependence in the wave function, a result that only holds in 
Galilean relativity but not for truly (Einsteinian) relativistic wave func- 
tions, due to the well-known spin-orbit coupling. After all, the spin of a 
particle is not determined by the expansion of the wave function u(pa) in 
terms of the spin projectors referring to the rest frame; what actually 
matters is that, according to the general formulas (3.5), the u(ps) transform 
among themselves, 

D(g) u(p op) = u(p' p) D'( w)o,o (3.28) 

This equation at once follows from the definition of the u(pa), equations 
(3.22a) and (3.22b) and the fact that the u(a) transform among themselves 
under rotations, (3.18a). To put it simply, Lorentz transformations neces- 
sarily mix the spin projectors X~(s) but they certainly do not mix the spins 
of the various one-particle wave functions f+_(xlpa). To obtain these plane 
wave solutions of the wave equation we can quite literally follow the 
traditional method of first solving the wave equation in the rest frame and 
then boosting to arbitrary momentum; we only have to be careful to use 
different boosts [pa] for states having different masses m~. 
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4. ADJOINT WAVE EQUATION AND WAVE FUNCTION; 
SCALAR PRODUCT, ORTHOGONALITY AND 

COMPLETENESS RELATIONS 

629 

Having standardized the transformation law D(g) of the wave func- 
tion, we cannot impose any further conditions, like hermiticity of t o  or the 
existence of a hermitizing matrix, without severely and unduly restricting 
the class of wave equations to be considered. From the theoretical point of 
view there is no need for additional demands on D(g) or the matrices fir. 
In this section we want to show that for any regular wave equation we can 
in a natural way define the adjoint wave function and a conserved 
Lorentz-invariant scalar product (positive definite in Fock space), essential 
for the quantum mechanical formalism. 

For every wave equation (1.5) we define the corresponding adjoint 
wave equation to be 

~(x)(ifl~'O~, + l)=O (4.1) 

from this rather obvious definition all other developments will be seen to 
follow inevitably. 

As the behavior of the matrices flv under Lorentz transformations has 
already been fixed by (1.3), the row vector ~(x) necessarily has to trans- 
form under the Poincar6 group according to 

f/(x')=tp(x)D - l ( g )  (4.2) 

for all x ' =  L(g)x + a. Evidently the adjoint wave equation has exactly the 
same mass and spin spectrum as the original wave equation. In the basis of 
the plane wave solutions the connection between a particular wave func- 
tion f+(xlpa ) and its corresponding adjoint wave function f+(x[pa)  is 
most easily established in the rest frame. For a regular wave equation (1.5) 
containing only massive particles t o  is required to have a complete set of 
eigenvectors belonging to real eigenvalues; hence t o  is equivalent to a real 
diagonal matrix d: 

M - i t  o M = d (4.3) 

d being real, we also have that 

(B~ t = (MM t) - l f l  ~  (4.4) 

The similarity transformation M will in general not be unitary as fl 0 is not 



630 Bir[tz 

required to be Hermitian. [The fact that t 0  is equivalent to its Hermitian 
conjugate does not generally imply the existence of a hermitizing matrix 
with ( f l~ ) t=) / f l~ - l ;  for that also D(g-1)t=~lD(g)~1-1 would be neces- 
sary, but here we are not making such an assumption about the transfor- 
mation law D(g).] We denote by t(ae) the eigenvectors of d, 

dr(at) = e~t(ae)  (4.5a) 

where e = _+ 1 distinguishes the solutions belonging to positive and negative 
eigenvalues. They satisfy the orthogonality relations 

tt(a~)t(a' ~') = 8(a,a')6,,, (4.5b) 

and the completeness relation 

E t(,~,) | t+(,~,) = 1 (4.5c) 
ot~ 

Naturally we have used in (4.5b) the usual unitary and positive definite 
scalar product for the eigenvectors t(ae); it would be quite irksome to do 
otherwise. Applying the similarity transformation M we obtain for the 
(right) eigenvectors w(ac) of fl 0 

w(ar = Mt(ac) (4.6a) 

fl ~ ae ) = c7~,, w( ae ) (4.6b) 

where w(ac), e =--+ 1, collectively stands for the spinors u(a) and v(a) 
discussed in Section 3. For every w(ae) we define its corresponding adjoint 
(left) eigenvector ~(ae) of 13 0 as 

~(a , )  = t t (ae )M-I  (4.6c) 

~(~)3 ~ o,~(~0 (4.6d) 

For the definition of the adjoint spinor )~(ae) we have no choice but the 
matrix M-1  in (4.6c), as in general wt,(a~)= tt(ae) M t  will not be an 
eigenvector of fl 0. The following orthogonality and completeness relations 
hold: 

(4.7a) 

51. w ( ~ )  | ~ ( ~ )  = 1 (4.7b) 
OrE 
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compared to 

E w(ae) | wt(ac) -- M M  ~r 
OrE 

(4.7c) 

In Section 3 we derived that 

flsw( ac) = w( a, - r (4.8a) 

similarly we have for the adjoint wave functions 

~(ae) f l  5 = ~ (a ,  - c) (4.8b) 

as the matrix f15 commutes with M M  t [see Eq. (4.7c)]. Analogously M M  t 
commutes with D(r) for all rotations r ESU(2) ,  and we find that the 
adjoint wave functions if(at) transform under rotations similarly to the 

D(r)  w(sop, ~) = w(so'p, r D S(r)o, o (4.9a) 

~(sop, e)D(r)  = D'(r)oo,~(so'  p, r (4.9b) 

with a sum over the double index a'. Expanding the spinors w (w-) in terms 
of the spin projectors Xi(s) introduced in (2.2), we obtain the N constants z i 
(s which make up the components of the reduced wave function: 

Wi( Sop, C) = Zi( Sp~ )Xi(  Sa ) (4.10a) 

(4.10b) 

where we have suppressed the indices aib r The above equations (4.6) anal 
(4.7) are then easily translated into relations between the reduced wave 
functions and the reduced mass matrix A(s) defined in (2.5): 

E Aik(S)Zk(St~) = r zi(st~) (4.11 a) 
k 

~(spe)A,k(S) = r k(SPe) (4.1 lb) 
i 

i , k =  1,2, . . . .  N. For fixed s we have the orthogonality relations 

E Z'-I(SPC)Zi(SP'c')A(AiBis) = ~pp'~r ' ( 4 , 1 2 )  
i 
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and, again for every s, the completeness relation 

(4.13) 

We observe that in these orthogonality and completeness relations actually 
only those reduced wave functions contribute that give rise to nonvanish- 
ing wave functions w(ae) or ~(ae), i.e., where the appropriate triangle 
inequalitie s are satisfied: A(jAJ2J3)----1 if the triplet of angular momenta 
satisfies the triangle inequality, otherwise A=0. From (4.8) we derive the 
simple relation between the reduced wave functions belonging to opposite 
eigenvalues of A(s), 

(4.14a) 

and also 

- , ) =  ( -  (4.14b) 

The knowledge of the reduced wave functions is essential not only for the 
computation of the mass spectrum but also for all practical calculations as 
the zi(ac ) and i,k(a'e' ) explicitly occur in the formulas of physical observ- 
ables [As an example see Biritz (1975c) for the expression of the magnetic 
moments.] These reduced wave functions z(ac) together with their corre- 
sponding adjoints g(ac) are determined as the fight and left eigenvectors of 
the reduced mass matrix A(s), that is by a simple N-dimensional eigen- 
value problem; we recall that N is the number of irreducible representa- 
tions Di(g) of SL(2, C) contained in the transformation law D(g). 

The spinors w(paO describing particles in motion are obtained by 
applying the boost [pal appropriate for the state a, 

= D ( [  (4.15a) 

The adjoint wave function transforms under the Lorentz group according 
to D-l(g), equation (4.2); hence the adjoint spinor corresponding to 
w(pae) is given by 

= iv - ' ( [  (4.15b) 

In these formulas N a is a normalization constant to be chosen presently. 
We observe that the adjoint wave function ~(pac) will in general not be 
simply related to the Hermitian conjugate of w(pac). Such a relation only 
holds in the rest frame where ~ (a0 - -w t ( aO(MMt) - l ;  however, as we do 
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not impose any restrictions on D(g), this simple connection is generally 
lost for p =/= 0. 

Before discussing the adjoint wave functions in coordinate space, we 
first want to derive the orthogonality and completeness relations in 
momentum space. From the wave equations satisfied by w(petc) and its 
adjoint, 

(cjr 1)w(pac) = 0 (4.16a) 

�9 (pctc)(%ar 1) -- 0 (4.16b) 

we at once deduce for the matrix elements 

~(cp, a~)/3 ~ a 'c ' ) - -  8.,.,.. 6,,, (4.17a) 

There cp stands for the 3-momentum _p;  we reserve the letters w and 
for the wave functions on the mass shell and can then omit the correspond- 
ing energy E,,(p). As the boost [pot] only depends on the mass m,, (and not, 
say, on the spin s or the degeneracy parameter p), the nonvanishing matrix 
elements in (4.17a) are related to matrix elements of the/3 ~ between the 
spinors at rest by a simple Lorentz transformation: 

~(cp, a,)/3~ a'e ') -- 8,..,.oS.,N2L([pa])~(ac)/3Pw(a'e')(4.17b) 

From the commutation relations (Z1 lb) of the/3 with the generators of the 
Lorentz group we infer that 

= (4.17c) 

with ~ =  1/m~,. Hence only /~=0 contributes to the matrix elements .in 
(4.17b), and we arrive at the familiar orthogonality relations, written here 
separately for the spinors u(pa) and v(pa) belonging to positive and 
negative frequencies: 

ff(pa)/3 ~ = 2E~(p) 8(a, a ')  (4.18a) 

~(pa)fl ~ = - 2E~(p) 8(a, a') (4.18b) 

ff(pa)fl ~ 7" pot') -- *3(pa)/3 ~ - pa')  -- 0 

where we have chosen for the normalization constant 

(4.18c) 

N2=2m~ (4.18d) 
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For fixed p, all the u(pa) together with the v ( - p a )  form a complete set, 

[2Eix(p)]-l[~(pa)u(pa)--~(--pa)v(--pa)] =flO -1 (4.19) 
IX 

We define the adjoint functions f(x]pa~) corresponding to the plane 
wave functions f(x]pac) introduced in (3.24) as 

f (xlpae ) = ~(pae)exp( i%p.x) (4.20) 

The so-determined adjoint wave functions form a complete set of solutions 
of the adjoint wave equation 

f(xlpae)(/~+ 1) =0  (4.21) 

In general, to obtain the adjoint wave function qT(x) for an arbitrarily given 
solution q,(x) of the wave equation, we expand ~(x) in terms of plane 
waves, 

q,(x) ffi ~ f(dpa)[a(pa)f+(xlpa)+b(pa)f_(xlpa)] (4.22a) 

with (dpa)= d3p/2E,,(p). The adjoint wave function ~(x) corresponding to 
(4.22a) is now defined as 

~(x)= ~ f d(pa)[a*(pa)f+(x[pa)+b*(pa)f-(x[pa)] (4.22b) 

the asterisk denoting the complex conjugate. Finally we introduce the 
scalar product for any two solutions q~ and �9 of the wave equation 

(,~, ~) = f a3x~(x)B o~,(x) (4.23a) 

or more generally 

(~, ~) = f do.~(x)B.~(x) (4.23b) 

with the integration extending over an arbitrary spacelike surface. In 
particular we obtain for the plane wave solutions 

(f(pae),f(p, a, c,))ffie(27r)32E.(p)~(p-p')8(a,a')8,e (4.24) 
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and thus in the general case 

635 

(~,~)= ~ f (dpa){a*(pa)c(pa)-b*(pa)d(pa)} (4.25) 

where, analogously to (4.22a), the c and d are the expansion coefficients of 
�9 (x) in terms of the plane waves. 

This scalar product fulfills all the usual requirements: 
(i) It is linear in the second factor, 

(q~, ~'1 ~, + 72~2) = 7l(ff, gPi) + 72(q~, ~2) (4.26) 

(ii) It is Hermitian, 

(~,~) -- (q~Ab)* (4.27) 

(iii) ~(x) and if(x) being any solutions of the wave equation and its 
adjoint it follows that 

0~,[ ~(x)fl~'Cb(x) ]=O (4.28) 

Hence the scalar product does not depend on the special choice of the 
space-like surface used in (4.23b), and in particular the scalar product is 
time independent, as already evident from the explicit expression given in 
(4.25). 

(iv) This last result together with the behavior of the wave functions 
and the /3~ under the Poincar~ group implies that the scalar product is 
Lorentz invariant, i.e., that the transformations Ta,g defined in (3.25) are 
unitary within this scalar product: 

( T,,.gtp, T,,.gtb) --- (~l,, ~) (4.29) 

It is apparent from (4.24) or (4.25) that the scalar product is indefinite. 
Furthermore the Hamiltonian 

H =/3o1{ - ifl. V + 1 ) (4.30) 

although Hermitian in this scalar product, is not positive definite, 

Hf( x I pae) = ,E~ (p)f( x I Potr (4.31) 

and therefore without a lower bound. These are already familiar difficul- 
ties encountered in c-number theories, and it is well known that a con- 
sistent physical interpretation of relativistic wave equations is only possible 
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within the framework of a quantum field theory. We shall see in Section 8 
that the second-quantized theories based on such wave equations have a 
Hermitian and positive definite Hamilton operator, as well as a positive 
definite metric in Fock space. 

Here our main concern was the existence of a uniquely defined 
adjoint wave function ~(x) with the usual properties, even for theories 
which do not permit a hermitizing matrix, that is where the transformation 
law D(g) is not pseudounitary. The establishment of the quantum 
mechanical formalism does not depend on a hermitizing matrix (in this 
context see also Weaver, Hammer, and Good, 1964; Hurley, 1974); more 
importantly we prefer our definition of the adjoint wave function even in 
those cases where there exists a hermitizing matrix, as in this way we can 
avoid an indefinite metric in Fock space (see Sections 7 and 8). Our 
definition of the adjoint wave function appears to be somewhat cumber- 
some for the c-number theory: We first have to expand i in terms of plane 
waves, and then find ~ according to (4.22b). However, this is just what is 
needed in the corresponding quantum field theory where the expansion 
coefficients are interpreted as creation and absorption operators. The 
so-defined adjoint field operators are not more difficult to use than those 
based on the usual hermitizing matrix: For the evaluation of the mass 
spectrum the reduced wave functions z(ac) have to be computed in any 
case, being given as the (right) eigenvectors of the reduced mass matrix 
A(s). It is then only a minor complication that the adjoint reduced wave 
functions ~(ac) are not simply related to the complex-conjugate transpose 
of z(ac) but have to be separately determined as the left eigenvectors of 
A(s), subject to the normalization condition (4.12). More generally the 
connection between i (x )  and its adjoint wave function ~(x) can be written 
in the form 

~ ( x) = [ ,l( iO)i( x) ] t (4.32) 

where ~/(ia) is a certain differential operator the explicit form of which 
shall not concern us here. One might argue that there is no 
"local" connection between ~p and ~. There is no need for one. What 
actually matters is that the so-defined adjoint field operator ~(x) has local 
(anti-)commutation relations with if(x); this also will be deferred to Sec- 
tion 8. 

5. THE K L E I N - G O R D O N  DIVISOR AND PROJECTION 
O P E R A T O R S  

The various plane wave solutions f+_(xlpa ) describe particles with 
definite masses m, and as such trivially satisfy the corresponding Klein-  
Gordon equations. Clearly there exists an intimate connection between the 
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solutions of the wave equation (1.5) and those of an appropriate set of 
Klein-Gordon equations. Formally this is expressed in terms of the 
Klein-Gordon divisor d(q), a uniquely determined matrix polynomial in 
the 4-vector q~, satisfying the algebraic identity 

n 
(-~r+l)d(q)=d(q)(-g+l)= ]-[ (-q2+m,2)l (5.1) 

k~l 

There g =  q~,fl~', q2= q~q~, with q~ being an arbitrary complex 4-vector; we 
reserve the letter q for general 4-momenta off the mass shell. The product 
on the right-hand side of the equation goes over all the different masses m k 
contained in the spectrum of the wave equation (1.5) irrespectively of their 
multiplicities, i.e., independently of spin or further degeneracies. As some 
of the states a = (so) may have equal mass, we use the index k = 1,2,./., n 
for labeling the n distinct masses m, of the wave equation, to indicate 
clearly that only the different masses contribute to the Klein-Gordon 
divisor. In this section we want to derive three formulas for d(q), as the 
knowledge of the Klein-Gordon divisor is of considerable practical and 
theoretical importance: For example, by means of d(q) we will be able to 
express the various invariant functions of the wave equation (1.5) in terms 
of the corresponding functions associated with a set of Klein-Gordon 
equations. 

Evidently the Klein-Gordon divisor is related to the inverse of the 
matrix 1-~/'; for this purpose we briefly review some simple facts about 
matrix algebra (Smirnov, 1964). Any diagonalizable matrix X (in our case 
/30) satisfies the minimal equation 

( X - f l ) ( S - f 2 ) - . .  ( X - i n )  = 0  (5.2) 

fk being all the different eigenvalues of X, f i~fk for ivek; this relation is 
easily proved by applying a similarity transformation which brings X into 
diagonal form. We define the minimal polynomial 

(5.3) 

and the related polynomials/~k(z), k --- 1,2 . . . . .  n, given by 

(5.4) 

Furthermore we introduce the normalized polynomials 

which satisfy 

= (5.5a) 

E,(fk) = ~i~, (5.5b) 
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These Ek(z) form a basis in the space of all polynomials of degree n - 1 .  
For  a given integer g, 0 < g < n - 1, consider the expression 

Q(z)=z g- ~ CEk(Z ) (5.6) 
k = l  

the degree of which is not larger than n - 1. Actually, as we know n distinct 
values ~i with Q(~i)=0, i f  1,2, . . . ,n ,  we conclude that Q(z) vanishes 
identically. Thus 

z g--- ~ l~,Ek(z ) (5.7) 
k = l  

for g ffi 0, 1 . . . . .  n - 1. (In the next section we shall deduce f rom this simple 
algebraic identity that the contact terms in the propagator vanish.) 

By means of these polynomials we can construct a complete set of 
projection operators Ek(X ). Equation (5.7) is an algebraic identity which 
also holds for the matrix X as argument. Taking g = 0 we find 

gkCX)=l (5.8) 
k f f i l  

/~(z) being the minimal polynomial of the matrix X implies that ( X -  
~k)#k(X) ffi #(X) = O. It follows that 

xgk(x) 

and hence for any function f(x) of the matrix X 

(5.9) 

f(x)g,,(x) =Y(tk) g,,(x) (5.10) 

In particular we obtain that the Ek(X) are projection operators, 

~ , ( X ) ~ k ( X  ) = g i ( r  = Ckg,,(X) (5.11) 

AS the Ek(X ) form a complete set, any function f (X)  can be expanded in 
terms of the Ek(X): 

/l 

f ( X ) =  2~ f(~k)Ek(X) (5.12) 
k = l  

(sometimes called the formula of Sylvester). For  the matrix function f(X) 
to exist the ordinary complex function f(z) has necessarily to be well 
defined at the eigenvalues ~k of the matrix X; it can be shown (Smimov, 
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1964) that this is also the criterion for a power series in the matrix X to 
converge. 

We remark that these projection operators Ek(X ) are uniquely de- 
termined by the following properties: Assume a set of operators (matrices) 
~k,r to be given by 

S ~ k ,  r =~k~k,r (5.13a) 

and which satisfy the completeness relation 

"~ ~k,~ =1 (5.13b) 
k,r 

As the Ek(X ) are simple polynomials in X we deduce that 

~k(X)~i , r  = ~k(~i)~i,r ffi ~ik~i,r (5.14) 

which together with the completeness relation (5.13b) implies 

gk(x)-- E (5.15) 
r 

For the Klein-Gordon divisor we need the inverse of the matrix 1 -  X. 
From (5.12) we obtain 

( l - X )  -I= ~ (1--~k)-ZEk(X) (5.16) 
k = l  

where with no loss of generality we may assume all ~k ~ 1. According to 
(5.4) we can write (l--~k)-r=/~k(1)/t~(1); in view of the Klein-Gordon 
divisor we define a matrix polynomial | (X), 

|  ~ /xk(1)Ek(X ) (5.17) 
k ~ l  

which satisfies 

( 1  - (5.18) 

where /x(1)=II(1--~k ) from (5.3). Another useful expression for the 
Klein-Gordon divisor is obtained by explicitly writ ing|  (X) as a poly- 
nomial in X. The corresponding expansion coefficients are given in terms 
of the elementary symmetric functions e k built from the n roots of the 
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minimal polynomial/t(z). They are defined as follows (Perron, 1951): 

We find 

Biri tz  

. ( z )  = - f , ) ( z  - f 9 -  - " 

= 2 n - l -  e l g n - l  + . . . + e k Z n - k  + . . . .-k en (5.19) 

e l - - - - - - ( ~ 1 + ~ 2 + . . .  -I-~n ) 

e 2 = ~ 1 ~ 2 + ~ 1 ~ 3  + ' ' "  + ~ n - l ~ n  (5.20a) 

e .= ( -1 )"~ ,~2 . - -~  n 

with the general term given by 

e k _ _ (  - k 1) Z ~i,~i " " " ~i k (5.20b) 

the sum going over all combinations of indices which satisfy i 1 < i  2 < �9 �9 �9 < 
i k. It is also useful to define e0= 1. We obtain for | (X) the expansion 

n 

or(x)= X 4#"-" 
k = l  

with the coefficients 

d k = e o + e l + ' ' '  + e k _  1 (5.21b) 

This relation either follows from rearranging (5.17) or, more simply, by 
directly proving that the matrix | (X) as defined in (5.21) actually satisfies 
(1 -- X)6~  ( X )  = #(1)1 .  

The matrix flo is diagonalizable for a regular wave equation (1.5) 
describing only massive particles. Therefore flo has the minimal equation 

f l  ( flo 2 - X 2) = 0 (5.22)  
kffi l  

where the product only contains the different eigenvalues h k - -1 /m k of fl0 
irrespectively of their multiplicities; we have used the fact that with every 
h a also - X  a is an eigenvalue. From the behavior of the fl~' under Lorentz 
transformations we deduce that the matrix X=~/a (hi= q~,fl~', q~, being an 
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arbitrary complex 4-vector) satisfies the minimal equation II(X--~k)=0 
with ~k = q2),~, q2= q~q~. In this case we find 

IX ( - q2 +mk z) = Cp(1) (5.23a) 

where we have introduced the constant 

c =  f i  m~ (5.23b) 
k z l  

Here again the product only goes over all the different masses m k de- 
scribed by the wave equation. By definition the Klein-Gordon divisor 
satisfies 

( - g +  1)d(q) - c/~(1)1 (5.24a) 

hence 

d(q) = ctt(1)(1 - t / )  -1 

= c(1 +4r _ ~/2)- 1 (5.24b) 

Setting X - t / 2  in (5.18) we immediately derive 

d(q) = c(1 + ~/) | (4r z) (5.25) 

From the above formulas we obtain two different expressions for the 
Klein-Gordon divisor. We learn from (5.17) that 

n 

d(q) = (1 +~[) ~, Cltk(1)Ek(~[ 2) (5.26a) 
k z 1  

with 

and 

ClXk(1) f m~ IX ( _ q 2  + mr) (5.26b) 
j # k  

Ek(~Z) = I I  [_~/(q2),/212_~? 
2 xt-V 

(5.26c) 
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hkffi 1 / m  k. By means of (5.21) we arrive at an expansion of the Klein-  
Gordon divisor in powers of g: 

n 

d(q) =(1  +~/') ~. cdk(g2) n-k  (5.27a) 
k = l  

with the coefficients d k given in (5.21b), where the elementary symmetric 
~k -- q ~mE. We can functions ~ are to be constructed from the values _ 2 2 

factorize their q2 dependence and find, with c = IIm 2, 

ce k = ( - 1)nq2k~n_ k (5.27b) 

denoting the symmetric functions directly built from the n distinct 
masses mk 2. As an illustration we quote the simple examples n--1 ,2 ,3  from 
which the general building principle of the Kle in-Gordon divisor will be 
obvious: 

n f l :  

n--2:  

nffi3: 

d(q)--- (4 +4r 2 (5.28a) 

d ( q ) = ( l  + g)[  m2m2~[2 + m 2 m 2 - ( m 2  + m2)q 2] (5.28b) 

d(q) = (1 + ~/')[ - ~3(~[2) 2 -  (e3 + q2e2)g'2 - (e3 + q2e2 + q4el) ] (5"28c) 

with~l _ ( m 2 + m 2 + m 2 ) , -  2 2 2 2 m2m32and~3__. .2_2_2 ---- e 2 ~. mira 2 + mlm 3 + - -  t r r l l t r l 2 t t t 3  , 

The two formulas (5.26) and (5.27) for the Kle in-Gordon divisor are 
not always very useful. For example, in the perturbation expansion of the 
S matrix one encounters matrix elements of d(q) between certain spinors 
w(pac) describing asymptotically free particles. For this purpose an expres- 
sion for d(q) in terms of projection operators constructed from the wave 
functions w(pac) is more practical. Corresponding to every state a = (sp) in 
the spectrum of the wave equation we define the operator ~+(q) by its 
graphical expression given in Figure 6. Suppressing all indices aib~, its (ik) 
block of matrix elements reads 

r%(q)ik = E D'~'[(q)]ui(~ q)-I ] (5.29) 

Consistent with our notation introduced in Section 2 for the generators of 
the Lorentz group, we have simply written D A' for the matrix DA'|  B' and 
similarly for D ak, in accordance with Figure 6. In this formula u(a) 
denotes the eigenvector of flo and fi(a) its adjoint spinor, as derived in 
Section 3. With an arbitrary complex 4-vector q~ (q2~e0) we associate the 
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s 
N 

~ k 

Fig. 6. Graphical representation of the projection operator defined in equation (5.29). 

SL(2, C) matrix 

(q) = q~,ot'/(qZ) l/z (5.30a) 

and its inverse 

( q ) - ' =  q~rI, l(q2)'12 (5.308) 

with the usual Pauli matrices introduced in Sections 2 and 3. For definite- 
ness the principal value of the square root has to be taken, 0 < arg(q2) 1/2 < 
~r; we shall see that actually the Klein-Gordon divisor is independent of 
this choice of the sign. 

Similarly we define the operators I~_(q) constructed from the eigen- 
vectors v(a): 

F~-(q)ik -- E Da'[(q)]vi(a)| -1 ] (5.31) 
f f  

Using the simple connection (3.17b) between the spinors u(a) and v(a), 
v~(a) = ( -  1)ZA,ui(a), we obtain 

rL(q) = ~ + ( -  q) (5.32) 

In the following we shall simply write I~(q) for ~+(q). 
2m 2 On the mass shell of the state a, q = ~ p ,  ~ -m~, .p~ the matrix 

(~p) can be factorized in terms of the boosts [pa] introduced in Section 3, 

(a,)= [ p,~][ p,~]t (s.33) 
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These SL(2, C) matrices can now be shifted along the lines of Figure 6 
according to the rules laid down in Appendix A. We find that on the mass 
shell 

r~(~o) = ivy-2u(p~) | a(p~) (5.34) 

with the normalization constant N~=2m~ from (4.18d). As the projection 
operators Ek(4r 2) that make up the Klein-Gordon divisor are uniquely 
determined, we obtain an unambiguous prescription for the continuation 
of the wave functions u(pa)ff(pa) in (5.34) off the mass shell. We want to 
show that our definition given in equations (5.29) and (5.30) is the correct 
one. It trivially follows from the orthogonality and completeness relations 
(4.7a) and (4.7b) of the spinors u(a) and v(a) that the I~(q) form a 
complete set of projection operators: 

i~(q) r - ' (q )  = ,~( ot, a ' ) F " (  q)  

F"(q)W'( - q) = 0 

(5.35a) 

(5.35b) 

Y, t-(q) + r - ( -  q) = 1 (5.35c) 

Their importance for the Klein-Gordon divisor stems from the relation 

gF~(q) = r~(q)g= (q2)'/2X,,I~(q) (5.36a) 

and thus also 

8'F'~(- q) = -(q2)'/z~.F'~(-q) (5.36b) 

This equation is easily proved with the help of the graphical expressions 
for the matrices fl~' and the projection operator 1 "~. In particular we find 
that 

g2 [ r .(q) + r~(_ q) ] _ q2~ [ r.(q) + r . ( _  q) ] (5.37) 

Yet this property of the F = and their completeness (5.35c) are just the 
requirements for the uniqueness theorem of the projection operators 
EI,(~/2) to apply [see equations (5.13)-(5.15)]. Hence we have proved that 

Ek(g 2)-- • I~(q) + I'~(-- q) (5.38) 
m a ~ m k 

where the sum is extended over all those states a = (sp) that have the same 
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mass m~ = m k. This implies for the Klein-Gordon divisor 
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d(q)  = (1 +~/) ~ ctz=(1)[F~(q)+ F~(- q)] (5.39) 

c/~(1) being given by (5.26b); we have simply written/~ for/~k~. 
We shall need the values of the Klein-Gordon divisor at the various 

mass shells q2= m 2. From (5.26b) we deduce that 

C~j(1)lq2=m ~ = 6jkm2r~ - ' (5.40) 

with the constants r e defined as 

r~ -1-- ~I ( - -m~+mf)  (5.41) 
j ~ k  

2 2 [These coefficients r k are just the residua of [ I I ( -q2+ m2)]-I at q = mk. 
See equations (6.9) and (6.10) below.] For the momentum q = k p =  
(Ek,P),E k = +(p2+. 2,1/2 rag) we derive from (5.34) and (5.36) that 

(l+ktC)Ek(ktCZ) --2 • F"(kP)=2Nk -2 E u(pa) |  (5.42) 
m a  = m g  m a  ~ m k 

We find that on the mass shell 

d ( k p ) = r ~ - l ~ ,  u(pa)| ff(pa) (5.43a) 
m a = m k 

Similarly we obtain 

d ( - t , p )=  rk -~ ~] v ( p a ) |  (5.43b) 
m ~  ~ m k 

This last equation also follows from the general relation 

fl, d( q) fl 5 = d( - q) (5.44) 

as d(q) is a simple polynomial in g. Analogously it is evident that under 
Lorentz transformations 

D( g) d( q) O - 7( g) = d( q') (5.45) 

for arbitrary complex 4-vectors q~, and with q'= L(g)q .  The completeness 
relation (4.19) now reads in terms of the Klein-Gordon divisor 

?l 
rk [ d ( E k , P ) _ d ( _ E k , P ) ] = f l o  ~ 

k=l 2Ek(p) 
(5.46) 
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In the formulas (5.26a), (5.29), and (5.30) the singularity at q2=0 is 
only apparent: The various terms contributing to the Klein-Gordon 
divisor conspire such that the appropriate cancellations occur. After all, 
according to (5.27) d(q) is a simple matrix polynomial in q. From the 
formulas (5.27a) and (5.27b) we infer that the degree of the Klein-Gordon 
divisor as a polynomial in q is not larger than 2n - 1. This is also the actual 
degree of d(q) as 2 n - 1  is the smallest possible value consistent with the 
definition (5.1) of the Klein-Gordon divisor. For a certain class of wave 
equations Umezawa and Visconti (1956) have shown that the degree of the 
Klein-Gordon divisor is related to the maximum value of the spin con- 
tained in the wave equation. However, this result does not hold in general, 
and exceptions have already been noted before (Glass, 1971; Loide, 1977). 
In our case the degree of d(q) depends solely on the number n of different 
masses mk described by the wave equation, and is not directly related to 
the spins of the particles involved. No simple relation is to be expected, as 
even for a given type of wave equation, i.e., for a given transformation law 
D(g), we can arrange degeneracies or remove them at will by varying the 
free linkage parameters bik contained in the fl~. [For a simple example see 
Biritz (1975b).] 

Here we shall be content with having proved that for every regular 
wave equation (1.5) there exists a corresponding Klein-Gordon divisor, 
without any additional requirements on the matrices fl" or the transforma- 
tion law D(g). In another article we shall investigate the actual form of the 
Klein-Gordon divisor and the corresponding propagators in more detail. 

6. THE INVARIANT FUNCTIONS 

With the aid of the Klein-Gordon divisor it is now straightforward to 
obtain the various invariant functions of the wave equation (1.5) from the 
appropriate solutions of a set of Klein-Gordon equations. We prefer a 
uniform notation of these functions for Boson and Fermion fields as well, 
and we follow the sign conventions of Bogolubov et al. (1975). Hence 
certain of our invariant functions differ in sign from the definitions found, 
for example, in Schweber (1961) or Bjorken-Drell (1965). 

We begin with the invariant solutions A~(x)=--A(xlmt~) and Green's 
functions belonging to a single mass m k, i.e., the solutions of 

(1--'1 + m2)Ak = 0 (6.1a) 

and the in_homogeneous equation 

(El + 8'(x) (6. Ib) 
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The various functions may be defined as contour integrals in the complex 
q0 plane: 

Ak(X ) = (2r -4 ycd4qe -iqx/( _ q2 + m 2) (6.2) 

where the appropriate contours for the functions A, A • A R, A A, and A F are 
indicated in Figure 7. First there is the Jordan-Paul i  commutator function 

Ak(X) .~ i(2~r)-3 f d4qe(qo)~(q2_ m~)e-iq.x (6.3) 

This function has the special values 

Ak(0,r ) = 0  (6.4a) 

and 

OA k 
0t (0, r) = 8 3(r) (6.4b) 

We define the positive and negative frequency functions A~ as 

+ i(2~r)_3f d ~  _ .  Ak(X)= exp( + ,  kP'X) (6.5a) 

with kP = (Ek, P). Obviously we have 

A~- ( - x) --- - A k (x) (6.5b) 

The Green's functions A R, A "~, and A F can be built from the above 

CR 

~CA 

Fig. 7. Contours in the complex q0 plane for the various functions defined in equation (6.2). 
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solutions A, and Aft of the homogeneous equation and the step function 
O(x)=O(xo) according to 

A~(x) = O(x)Ak(x) (6.6a) 

aS(x) = - o ( -  x)a~(x) (6.6b) 

a~(x)  = O(x)A: (x)  - O ( -  x)a~-(x) (6.6c) 

From the properties of A k and A~ it can be shown directly that the 
so-defined functions A R''4'F satisfy the in.homogeneous equation (6.1b). 

These functions are easily generalized for the multiple-mass equation 

f i  ( [ ]+  m2)A---0 (6.7a) 
k = l  

and the corresponding inhomogeneous equation 

n 

IX ([--] + m2) .Ai~ = 8 4(x) (6.7b) 
k = l  

all the masses m k being different from each other. We write A(x)~ 
a(xlm2m~. . .  m~) for the invariant functions associated with Eqs. (6.7a), 
and (6.7b); again we can express them as contour integrals: 

A(x) ---- (2~)-4fcd4qe-iq'x/ll( -- q2 + m~) (6.8) 

The integrand has simple poles at _+ Ek(q) in the complex qo plane, and the 
contours for the various invariant functions go around these singularities 
analogously to Figure 7. The invariant functions A(x) can be simply 
expressed as linear combinations of the functions Ak(X) belonging to one 
single mass m k. For this purpose, and also to prove that certain time 
derivatives of A(x) vanish at xo=O, we recall the identity (5.7) of the last 
section. Consider the polynomial 

r ( z ) = ( - z + z O ( - z + z 2 ) . . .  ( - z + z . )  (6.9a) 

with zk = E~(q), and hence z i~z  k for i~k .  Under this condition we have 
shown that 

zS= ~ z~pk(z)/p~(Zk) (6.9b) 
k = l  
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for every integer g-- O, 1,2,...,  n - 1. Introducing the constants r k [see also 
equations (5.41) and (5.43)] 

r k  1 = p k ( Z k )  = ]-[ ( - -  E 2 "l- Ej 2) 
jv~k 

2 2 =~ ]~ (--mk+mj) (6.10) 
jv~k, 

we obtain for g -- 0 

1= ~ rkpk(z ) (6.11a) 
k ~ l  

o r  

liP(z)= ~ rk/(--Z+Zk) (6.11b) 
k = l  

and in particular that 

n 
1/II(- qE + m~) = E rk/(-  qZ + m~) (6.11c) 

k = l  

From the identity (6.9b) we can then derive various sum rules for the 
residua r k. Assuming g4=0 in (6.9b) we obtain at z =0  

that is 

O= ~] Z[rkPk(O)=p(O ) ~ rkzg-I 
k = l  k = l  

(6.12a) 

~, rkZ~=O (6.12b) 
k = l  

for j = 0 , 1 , 2  . . . .  , n - 2 .  Finally, setting g=n-1  and comparing the 
coefficients of z n-1 in (6.9b) we find 

n 
/'kZ~ - 1  = ( - -  1) n - I  (6 .12C) 

k = l  

Hence we have the identities 

rkEk(q)ZJ=o (6.13a) 
k ~ l  
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forj=O, 1 ,2 , . . . ,n-2 ,  and 

rkEk(q)2"-2=( - 1) "- l  (6.13b) 
k = l  

for all values of q. 
The function A(x) can therefore be expanded as 

A(x)= ~ rkAk(X ) (6.14) 
k = l  

and so can the positive- and negative-frequency solutions A-+(x) of the 
homogeneous equation (6.7a). Obviously A(x) has the same invariance and 
symmetry properties as the individual functions Ak(x ). As expressed in the 
identity (6.13a), the various terms in A(x) conspire such that 

3gA(x) =0 at Xo=0 (6.15a) 

for all integers j = 0, 1,2 . . . . .  2n - 2. [Of course, owing to symmetry the j th  
time derivative of A(x) vanishes at Xo = 0 for all evenj.] Furthermore, from 
(6.13b) we deduce 

32"- ~A(x) = 83(r) at Xo=0 (6.15b) 

These above equations are the straightforward generalizations of the 
familiar relations (6.4a) and (6.4b) which hold for the single-mass (n = 1) 
Klein-Gordon equation; for another special value of A(x) at Xo=0 see 
(6.23) below. From the definition (6.8) of the invariant functions as 
contour integrals it is obvious that identical expansions also hold for the 
Green's functions AR'A'F; for example 

AR(X)-- - ~ ,  r~A~(x) (6.16) 
k ~ l  

The so-defined function actually satisfies the inhomogeneous equation 
(6.7b). We find 

= D +  - 

(6.17a) 

as from (6.1 lc) there follows the identity 

k =  l j r  

(6.17b) 
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Thus also for the multimass equation (6.7b) its Green's functions can be 
built from the step function O(x) and the solutions A+-(x) of the homoge- 
neous equation: 

AR(X) = O(x)A(x) (6.18a) 

a~(x)= -O(-x)a(x) (6.18b) 

a~(x) = 0(x)a§  - 0 ( -  x )A- (x )  (6.18c) 

It is instructive to verify directly that these functions are solutions of the 
inhomogeneous equation (6.7b). From the fact that all the time derivatives 
OgA(x) vanish at % = 0  for j = 0 ,  1,2 ..... 2 n - 2  we obtain the recursion 
formula 

~gO(x)a(x)=~(Xo)a~-~a(x)+O(~)o~(~) (6.19a) 

and hence that the time derivatives ~ can be moved past the step function 
without any contact terms: 

(6.19b) 

for j=O, 1,2,... ,2n-1. Consider now, for example, equation (6.18a). 
According to (6.19b) the only nonvanishing contribution stems from the 
highest time derivative ~o 2n, 

~I (o  + ,,,~) O(x)a(x) = [ OoOCx) ] og"- 'a(x) 
k = l  

= $(Xo)O02"- 'A(x) = d4(x) (6.20) 

We finally come to the invariant solutions and Green's functions of 
the wave equation 

( -  i3"+ 1)S--0 

and of the inhomogeneous equation 

(6.21a) 

( -  i9'+ 1) s~.~ = 84(x) (6.21b) 

In complete analogy to the Dirac equation these functions are obtained by 
applying the Klein-Gordon divisor dUO) onto the corresponding functions 
A(x) of the multimass equations (6.7a) or (6.7b). First there is the invariant 
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function 

S( x) = d( iO )A( x) (6.22a) 

which satisfies (6.21a), and analogously defined positive- and negative- 
frequency solutions S • In exactly the same way we obtain the Green's 
functions SR"4'F; for example 

SR(x) = d(iO)Al~(x) (6.22b) 

which satisfies the inhomogeneous equation (6.21b) and the appropriate 
boundary conditions. 

From (5.46) [i.e., primarily from the completeness relation (4.19)] we 
deduce the special value 

S(x  o = O, r) = d(iO)A(x)ixo=O = i/~o 1~ 3(r ) (6.23) 

In Section 8 we shall find that S(x) actually is the commutator function for 
the corresponding quantum field operators [see equation (8.19) below]. 
Therefore we obtain the remarkable and consequential result that the 
commutator of the field operators based on regular wave equations is not 
more singular at the apex of the light cone than in the familiar Dirac case, 
independent of the (arbitrarily high) spins of the particles involved! 

This result has important consequences. At the purely technical level 
it implies that also for the wave equation (6.21b) its Green's functions can 
be constructed in the familiar fashion from the step function O(x) and the 
solutions S"(x )  of the homogeneous equation, i.e., that there are no 
contact terms. For example, the uniquely determined retarded Green's 
function SR(x) is defined as that solution of (6.21b) that obeys the 
boundary condition SR(x)=0 for x0<0. However, these are just the 
properties of the function O(x)S(x): It trivially satisfies the boundary 
condition and according to (6.23) it is also a solution of (6.21b), 

( - ixv+ 1 )O(x) S(x)  = - #o (Xo) s ( x )  + O(x)( - ixv+ 1) s ( x )  4(x) 

(6.24) 

Hence SR(x)-O(x)S(x)  is a solution of the homogeneous wave equation 
which vanishes identically for x 0 < 0, and therefore 

SR(x) = O(x)S(x) (6.25a) 

By similar arguments we prove 

S A (x) = - O( - x) S(x)  (6.25b) 
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and 
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= O(x)S +(x)- o(-  x)S-(x)  (6.25c) 

Equations (6.18a), (6.22b), and (6.25a) imply the identity 

d(iO)O(x)A(x) = O(x) d(iO)A(x) (6.26) 

i.e., that the Klein-Gordon divisor can be exchanged with the step 
function without any additional terms proportional to a 6(Xo) function and 
its derivatives; the other relations (6.25b) and (6.25c) then follow from 
(6.26) and the identity O(x)+ 0 ( - x ) - 1 .  However, equation (6.26) is a 
trivial consequence of the relations (6.19b) proved above and the fact that 
the Klein-Gordon divisor dUO) is a simple matrix polynomial in 0~ of 
degree 2 n -  1. For theories in which (6.26) is not valid extra terms propor- 
tional to the 8(x0) function and its derivatives appear in the propagator 
and destroy its Lorentz covariance. Noncovariant contact (that is, tem- 
porary local) terms have then to be added to the Hamiltonian in order to 
cancel these noncovariant terms in the propagator. The appearance of such 
contact terms has been a characteristic and embarrassing complication of 
almost any theory of higher spin considered up to now (see, e.g., Weinberg, 
1964a, b; 1968; Umezawa and Visconti, 1956). However, this appears to be 
an artificial difficulty which is not inherent in the nature of higher spin 
fields, as we have found all regular wave equations, describing any number 
of particles with arbitrarily high spins, to be free of such contact terms. 
This is not merely a mathematical nicety as it is well known (see, e.g., 
Umezawa, 1956) that, within the framework of the K~ill6n (1950) and 
Yang-Feldman (1950) formalism, the validity of (6.26) ensures the causal- 
ity of the interacting fields. These and related topics will be fully discussed 
in another article devoted to the causality and stability of regular wave 
equations in external fields. 

All these invariant functions transform under the Lorentz group 
according to 

D( g) S( x) D - ' (g)  = S( x') (6.27) 

x'---L(g)x. For the commutator functions we obtain the symmetry prop- 
erty under inversion 

S +(-  x)= - flsS -(x) f l  5 (6.28a) 

and consequently for the Green's functions 

S R ( -  x) = flsSa(x)fl5 (6.28b) 

SF(-- X) = flsSF(x)fl5 (6.28C) 
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From the above functions we can easily obtain the corresponding invariant 
functions S(x) of the adjoint wave equation 

g (x ) ( /~+  1) =0  (6.29a) 

and of the inhomogeneous equation 

~ ( / ' - ~ +  1) = ~ 4 ( x )  (6.29b) 

For example, we find 

gR(x) = sA( -  x)= BsSR(x)   (6.30) 

From the theory of regular wave equations we gain uniquely de- 
termined propagators for particles of any spin, SF(x)= d(iO)Ae(x), and in 
particular unambiguous expressions for these propagators off the mass 
shell. [See equations (5.29)-(5.34) and (5.39) above.] The explicit form of 
these propagators will be studied somewhere else; there we also want to 
discuss the various ad hoc prescriptions (Sugar and Sullivan, 1968; Steele, 
1970; Jenkins, 1969,1971,1972b) that have been proposed, without the 
benefit of a consistent field theory of higher spin, to obtain propagators 
free of singularities. 

7. P,T, A N D C  

Thus far we have developed the general theory of regular wave 
equations without assuming the validity of parity, time reversal, or charge 
conjugation, as these transformations are not exact symmetries of the laws 
of nature. In particular we have defined the adjoint wave function and the 
scalar product without the aid of the usual hermitizing matrix, i.e., without 
postulating the theory to be manifestly covariant under parity. Similarly, 
the existence of antiparticles already followed without invariance under 
charge conjugation. Here in this section we want to study the restrictions 
and simplifications due to these discrete symmetries. 

In complete analogy to the local transformation property (1.2) or 
(3.25) of the wave function under the restricted Poincar6 group we also 
postulate a local transformation law under P, T, and C. Beginning with 
parity, we assume the existence of a unitary operator T e defined as 

Te~(x)=V~(~ ) (7.1) 

with ~--Px---(x 0, - r ) ,  and V being a nonsingular matrix acting on the 
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components of the wave function. Assuming no superselectionrules (Wick, 
Wightman, and Wigner, 1952) we normalize for simplicity 

V2=1 (7.2) 

For interacting fields a different normalization may be necessary (Racah, 
1937; Yang and Tiomno, 1950; Feinberg and Weinberg, 1959)--this would 
only require minor modifications of our formulas below. 

The parity transformation has to obey the group law (3.7b) with the 
elements of the restricted Poincar6 group; we obtain the condition 

V-ID(g)  V = D ( g  r (7.3) 

Hence a local implementation of parity is only possible for a quite 
restricted class of wave equations: The transformation law D(g) of the 
wave function under the Lorentz group has to be pseudounitary, i.e., D(g) 
has to contain with every irreducible component k---(A,B) also its con- 
jugate representation/~--(B,A). [In fact, we shall see below that from the 
nonsingularity of the parity matrix V there follows the even stronger result 
that the irreducible representation (A,B) and its conjugate (B,A) have to 
occur in D(g) with the same multiplicity.] For the theory to be manifestly 
covariant under parity, with every solution ~b(x) of the wave equation also 
its parity-transformed (7.1) has to be a solution of the same equation. This 
implies 

V - lilt'V= P~fl~ (7.4) 

in complete analogy to (1.3a) for restricted Lorentz transformations. In 
particular V commutes with fl~ and we may therefore assume the eigen- 
vectors w(ae) of flo, equation (4.6b), also to be eigenstates of the parity 
matrix, 

Vw( ete) = *1~ w( cte) (7.5a) 

with the intrinsic parities ~7 - -+ 1. It then follows from the orthogonality 
and completeness relations (4.7a) and (4.7b) that the adjoint spinor ~(ae) is 
an eigenvector of V - t  with the same eigenvalue, 

(7.5b) 

The effect of the parity transformation T e on the plane wave solutions 
f(xlpcte ) is easily derived. We find 

Tef( x I Psope) = %~f( x I ffso'pe) D S(r) o,o (7.6a) 
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with the rotation r =  [fia]t[pa], as already derived in (3.8b) from general 
invariance arguments. To simplify the notation we shall suppress the 
magnetic quantum numbers o and a' in the following; the above equation 
is then written as 

Tpf ( "xl pae ) = ~fJ(  xl fiae ) D 3( r ) (7.6b) 

According to (4.22) the corresponding adjoint wave function is given by 

(-~ef)(x[ pae) = ~ D ' ( r -  ' ) f  (xlfiae) (7.6c) 

which, however, is just the same as f (~lPae)V -1. Hence we obtain in 
general for the parity transformed adjoint wave function 

v- ,  (7.7) 

This ensures that T e is a unitary operator within our scalar product (4.23). 
To make further progress we need a more explicit expression for the 

parity matrix V. According to (7.3) V relates D(g) to D(g*- 1). For a single 
irreducible representation D aB we observe that D AS(g *- i) merely differs 
by the order of the rows and columns from the representation DBA(g); the 
appropriate rearrangement can be accomplished by a unitary transforma- 
tion. For this purpose we define the (2A k + 1)(2B/, + 1)-dimensional matrix 
(Uff) by its elements 

( Uk~c)ab; ba = ~aar (7.8a) 

evidently 

( u k) = 

These matrices connect the irreducible representations k and/~, 

(7.8b) 

D k( g , -  ,) = ( UkF~)D ~( g)(Ur (7.9) 

To express the parity matrix in terms of the (U/g) we subdivide V into 
blocks of matrix elements (V~k), in accordance with our completely re- 
duced standard form of D(g), introduced in Section 3, and with the 
analogous block form (fl~) of the matrices fl~. Considering the i ,k block 
of the equation VD(g*-I)  = D(g) V we learn from Schur's lemma that 

1) va, ( Ui7 ) (7.10) ( v , , )  = n ( / - , k ) ( -  A,+B,-F 

There the symbol 8(i,j), which has to be distinguished from the ordinary 
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Kronecker delta ~/, is defined as 

6(i,j) = 8A,AfiB,~ 

657 

(7.11) 

i.e., it indicates that the representations D i and D j are identical. [We recall 
that a given irreducible representation may occur more than once in the 
decomposition of D(g).] The vg~ are arbitrary constants, and the phase 
factor has been chosen to obtain a simple expression for the reduced parity 
matrix ~(s) ,  equation (7.15) below. There F stands for F = 0  in the case of 

1 for fermions. For simplicity we are assuming that bosons, whereas F = ~  
there are no superselection rules; hence the wave equation describes either 
bosons or fermions. 

From (7.10) it is evident that the only nonvanishing elements of the 
parity matrix V occur in those blocks (V~k) that connect a representation 
(A,B) with its conjugate (B,A). This implies that 

( ~5 V~5) i k  = ( --  1)2Ai+2Ak(Vik)  = ( --  1) 2Ai + 2 B i ( V / k )  

~ -  ( - -  2s  1) (v,,) (7.12a) 

and therefore 

flsVfl5 = ( - 1)Z~v (7.12b) 

From this last equation we obtain the well-known result that the intrinsic 
parities ~/~ + and ~ _  of particles and antiparticles are related according to 

P v 1) 2s ~ + ~ , _  = ( -  (7.13) 

We now want to show that  in a theory that is manifestly covariant 
under parity the number of times a certain irreducible representation 
(A ,B) ,Di=D As for i - -1 ,2  . . . . .  n is contained in the transformation law 
D(g) has to be equal to the multiplicity with which the conjugate repre- 
sentation (B,A) occurs in D, D i = D  BA for /-=1,2 . . . . .  ~; we may assume 
n >~ff. Consider the n linearly ' independent column vectors c(i), the only 
nonvanishing components of which are in the block corresponding to the 
representation Di, c,(i)= 8~kX~(Sa), i= 1,2 . . . . .  n. There Xi(Sa) are the spin 
projectors introduced in (2.2), and we have labeled the components of c(i) 
appropriately to the block form of D(g)  and V, as discussed in Section 3 in 
connection with equation (3.18b). Applying now the parity matrix V, 
equation (7.10), onto these n linearly independent vectors c(i), the ensuing 
vectors Vc(i) can be expressed as linear combinations of the ff vectors 
c(/~), n >/ft. However, V being nonsingular demands n = ft. 
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For the effect of the parity matrix on the spinors w(ae) we note that 
according to the symmetry properties of the Clebsch-Gordon coefficients 
(2.2a) 

( Uk~)Xg (str) = ( - 1)a* + B~- SX~(SO) (7.14a) 

To determine the intrinsic parities of the various spinors w(ae) we only 
have to know the effect of the parity transformation on the reduced wave 
functions. We write 

with 

[ V W ( O I E ) ] i  = z iP (o IE)Xd(S tY )  (7.14b) 

z f  (ae) = ~ CV(s)itzt(ae ) (7.14c) 
l 

We obtain for the so-defined N-dimensional reduced parity matrix 

(-- 1) 6(t,k )vil ~ ~ ( S ) i k  = s - - F  �9 -- (7.15a) 

its only nonvanishing matrix elements connecting mutually conjugate 
representations. [Note the meaning of the symbol 6(i,j), equation (7.11).] 
We learn that the spin dependence of the reduced parity matrix can be 
completely factorized, 

This reduced parity matrix satisfies 

(7.15b) 

~ 2 = 1  (7.16) 

and it commutes with the reduced mass matrix (2.5), 

r = A ( s ) ~  (7.17a) 

This last equation (viz., Vfl~176 and (7.3) then imply the general 
relation V-lfl~'V= (Pfl)~' for all/~. Equation (7.17a) is ensured for all spin 
values once it is satisfied for one particular s; in fact, using the explicit 
expressions (7.15) and (2.5) for the reduced matrices ~ and A(s), we 
obtain the following condition on the Vik and the linkage parameters bi~: 

vitbtkS(l,/') = ( -- 1) 'p'* Z bi/t)lk~(l, k) (7.17b) 
1 1 

with the phase cpik=Ai+Bi+Ak+Bk+2F+ 1. 
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These above results allow a quite detailed discussion of the intrinsic 
parities ,/~ of any parity covariant wave equation (1.5). According to 
(7.17a) we can find simultaneous eigenvectors of the N-dimensional re- 
duced matrices A(s) and 7 ,  

A(s)z(sp)=Ap(s)z(sp) (7.18a) 

~z(sp)=~oz(sp) (7.18b) 

Within a given branch he(s ) [see the remarks following equation (3.21)] the 
eigenvalue v/p of qF is independent of the spin, as from (7.16) the only 
possible values of % are ___ 1, and among them no continuous transition is 
possible. The intrinsic parities are given by ~/p(-1) "-F. For bosons the 
parities of particles and antiparticles are the same, and therefore within the 
corresponding branch of the mass spectrum the intrinsic parities *1~+ 
always alternate according to 

~/f~. =~/p(-  I f  for bosons (7.19a) 

irrespective of any singularities in the mass spectrum. For fermions this 
alternating sequence of parities along a given branch is interrupted at 
every infinity in the mass spectrum, 

~/f+ = _+ ~/p( _ 1)~- 1/2 for fermions (7.19b) 

the particles immediately to the right and left of the singularity (at 
unphysical values of s) having the same intrinsic parity. We present a 
schematic illustration of mass parity spectra in Figure 8. The intrinsic 
parities , / f  of all the particles are uniquely determined once the overall 
phases 7/p for the various branches of the mass spectrum are known. At 
least theoretically, these % = _ 1 can be chosen arbitrarily. The different 
choices for the ~/p reflect the existence of several physically inequivalent 
solutions of (7.17). Prescribing the *lp determines the phases of the linkage 
parameters bik and therefore also affects, sometimes rather drastically, the 
shape of the mass spectrum; for a simple example see (Biritz, 1975b). 

Manifest covariance under parity is only possible for a pseudounitary 
transformation law D(g). For arbitrary wave equations (1.1) this in general 
can only be achieved by a doubling of the number of components of the 
wave function. We emphasize that this doubling of the degrees of freedom 
(and hence of the number of particles described by the wave equation) 
does not necessarily imply the existence of degenerate parity doublets, i.e., 
doublets of particles having the same mass but opposite intrinsic parities. 
For wave equations containing spin zero or spin one-half particles in their 
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Fig. 8. Sketch of typical spin-parity values for one particular branch of the mass spectrum. 
The graph on top depicts h(s), which may assume both positive and negative values (particles 
and antiparticles). The parities of the corresponding states alternate according to equation 
(7.15b). In the two graphs below we have plotted the masses of the corresponding particles, 
m(s)=lh(s)l -l. From the connection between the intrinsic parities of particles and antipar- 
ticles we obtain the spin-parity values for bosons (shown in the middle) and fermions 
(bottom). 

spectrum such degenerate parity doublets occur only for special values of 
the linkage parameters bik but otherwise we have much freedom in the way 
we can split these doublets and even change their relative parities. [For 
more details we again refer to Biritz (1975b).] Hence we see no compelling 
reason for a nonlocal implementation of parity as advocated in Hurley 
(1974). 

The importance of parity (or of a hermitizing matrix) for the general 
theoretical framework seems to have been greatly overemphasized in the 
literature. There is the widely held belief that an invariant scalar product  
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and a Lagrangian only exist for wave equations with a pseudounitary 
transformation law D(g);  there even is a formal proof for this to be a 
necessary condition (Gel'fand et al., 1963; Naimark, 1964). As a con- 
sequence one usually takes without any further discussion the parity 
(hermitizing) matrix as metric operator in the definition of the scalar 
product. This is an unfortunate choice which invariably is bound to cause 
trouble. For the sake of the argument assume t 0  to be Hermitian, as is 
usually done. From Lorentz covariance the ~ are then anti-Hem-titian, and 
V simply coincides with the hermitizing matrix, ( f i r ) t =  (pf l )~= v-lfl~V. 
In that case we find 

(7.20) 

f being our adjoint wave function as defined in Section 4. We have just 
learned from equations (7.19a) and (7.19b) that in general the intrinsic 
parities alternate within the various branches of the mass spectrum; hence 
the use of V as metric operator will in general lead to an indefinite metric 
(even in Fock space). The above-mentioned proof that only pseudounitary 
D(g) render possible an invariant scalar product depends on the tacit 
assumption that the adjoint wave function ~(x) is locally related to the 
complex-conjugate and transpose wave function ~t(_x). It is perhaps 
tempting to demand such a local connection between ~ and ~t, consider- 
ing the postulated local transformation law of the wave function under the 
Poincar~ group and P, T, and C. However, such an assumption is too 
restrictive and there is no fundamental reason for this hypothesis. In fact, 
we have shown in Section 4 how to define, for any wave equation (1.5), the 
adjoint wave function and an invariant scalar product with the usual 
properties (4.26)-(4.29); in the next section it will be seen that the ensuing 
metric in Fock space is positive definite. 

For  time reversal we require the existence of an antilinear operator A r 
defined as 

Arq~(x ) = Wq,*(Tx) (7.21) 

with Tx = ( -  x 0, r), and W a nonsingular matrix acting on the components 
of the complex conjugate wave function. Assuming no superselection rules 
we normalize A 2-- er l  in accordance with (3.13a), i.e., 

WW* -- erl  (7.22) 

e r = • 1 being a real phase factor. From the group law (3.13b) relating time 
reversal and the elements of the restricted Poincar6 group we obtain the 
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condi t ion  

Hence a 
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W -  ID(g) W =  D ( g  T- 1) (7.23) 

local implementation of time reversal does not impose any 
restrictions on the transformation law D(g)  as it is well known that for all 
Lorentz transformations g ~ SL(2, C) 

g r -  1 = CgC - 1 (7.24) 

with the matrix C =  C 1/2= - i a  e as introduced in (3.11). For manifest 
covariance under time reversal, with every solution tp(x) of the wave 
equation (1.5) also its time-reversed (7.21) has to be a solution of the same 
equation. This implies for the matrices fl~ that 

W - l f l ~ W =  P ~ (  fl ~)* (7.25) 

the asterisk again denoting the complex conjugate. In particular we find 
f l ~  W(fl~ consequently Ww*(sope) and w(so'oe)CSo,a are eigenvectors 
of t30 belonging to the same eigenvalue which transform identically under 
rotations, using (3.11b). For simplicity we assume that there are no 
degeneracies (internal symmetries), and therefore 

Ww*(ae) = *l~w(ae) C s (7.26) 

where we have suppressed the indices o and o'. Iterating this last equation 
we find Tl~l*er(-- 1) z~= 1; therefore 

e r = ( - 1) 2s (7.27) 

as already derived in (3.16) from general invariance arguments, and the ~/r 
are (unobservable) phase factors of modulus one. Using the orthogonality 
and completeness relations of the spinors w(ae) we obtain 

~*( ae) W - I  = n r .C  -S~(ae ) (7.28) 

there we have written C - "  for the inverse of the matrix C ". 
On the plane wave solutions f (x lpae)  the time reversal operation 

(7.21) has the required effect 

A r f (  xlpae ) = n~f(  xlffae ) D ~( r') (7.29a) 

with the rotation r '---[fia]t[pa]C [see equation (3.14b)]. According to (4.22) 
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the corresponding adjoint wave function is given by 

(-~rf  )( x[ pae ) = ~q~* D S( r')- l] ( xJfiae) (7.29b) 

which is just the same as f(Tx[pae)* W - t .  We thus find for the transforma- 
tion law of the general adjoint wave function under time reversal 

(A~--~r~)(x) = f ( T x ) *  w - l  (7.30) 

Together with (7.21) and (7.25) this last equation ensures that A r is an 
antiunitary operator within our scalar product (4.23). 

The explicit expression for the time reversal matrix W is easily 
obtained in our standardization of D(g) and the matrices fl~. From (7.23) 
and (7.24) and Schur's lemma the i,k block of matrix elements is found to 
be given, up to a constant factor wlk, by  the matrix C k --=C Ab | C n~ [see also 
0.11)1: 

(Wik) = WikS( i, k) C k (7.31) 

the symbol 8 (i,k) has been explained in (7.11) above. The only nonvartish- 
ing elements of the time reversal matrix W are in those blocks (Wig) that 
connect identical representations (Ai, Bi) = (Ak, Bk). Hence 

( t5 Wfl5)ik ---- ( -- 1)2~'§165 = (Wik) (7.32a) 

i.e.,/35 commutes with W, 

t5 W= Wfl5 (7.32b) 

From this we learn that the phase factors ~7~ r for particles and antiparticles 
are identical, 

,/,~ r ~  7/ -,r _ ~ = ~r .  (7.33) 

We write for the effect of the time reversal matrix W on the spinors w(ae) 

(Ww(ae)), = z,W( ae))6( str') C~, o (7.34a) 

with the reduced wave functions 

z,W(c(e) = E ~ (7.34b) 
k 

where we have introduced the elements ~tlfik of the N-dimensional reduced 
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time reversal matrix elf: 

6~ffik = WikS( i, k) (7.34c) 

Equation (7.34b) only describes the effect of the matrix W on the reduced 
wave functions; the fully time-reversed wave functions are, of course, given 
by 

zir(ae) = E ~;kzT, (ae) (7.34d) 
k 

These reduced wave functions z(sp) corresponding to particles at rest are 
determined by the equations 

A(s)z(sp) =x.(s)z(sp) (7.35a) 

(7.35b) 

From (7.22) and (7.34a) we learn that 

~lf ~21f* = 1N (7.36) 

lU being the N-dimensional unit matrix. ~21f satisfies with the reduced mass 
matrix A(s) of (2.5) 

A(s)6~f = ~ (7.37) 

This last equation (viz., flo W= Wfl~) and the property (7.23) imply the 
general formula W-lf l~W=P~(f l")  * for all /x; we obtain the following 
relation between the linkage parameters bik and the matrix elements Wik 
ofa~Lf : 

bitwlk6(l,k)-- ~ wilt(i,l)b ~ (7.38) 
l 1 

Every invariant wave equation (1.5) automatically contains a 
negative-frequency solution corresponding to each solution with positive 
frequency. In the usual definition of charge conjugation one makes the 
additional demand of a local connection between particle and antiparticle 
solutions. Observing that the plane wave functions f___ are proportional to 
exp(-T-ip.x), we are led to define charge conjugation by the operation 
(antilinear in the first-quantized theory) 

Ac~P( x) = Z~p*( x ) (7.39) 

There Z is a nonsingular matrix which acts on the components of the 
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complex conjugate wave function. We normalize A~ = ecl,e c --- + 1 being a 
real phase factor; hence 

ZZ* =ecl  (7.40) 

Charge conjugation is assumed to commute with all the elements of the 
Poincar6 group, 

Ta, gAc = Ac T,,,g (7.41a) 

which implies 

Z - ' D ( g ) Z = D ( g ) *  (7.41b) 

i.e., a pseudounitary transformation law D(g). For a theory to be mani- 
festly covariant under charge conjugation, with every solution if(x) of the 
wave equation (1.5) also its charge conjugate (7.39) has to be a solution of 
the same wave equation. For this the matrices fl~ have to satisfy the 
condition 

z - l ~  z-'~" - t f f  (7.42) 

In particular we obtain flo Z =  -Zt~'); thus Zw*(sope) and w(so' p, - e)C~, o 
are eigenvectors of t 0 to the same eigenvalue which transform identically 
under rotations. Assuming no degeneracies we deduce 

* C Zw (ae) = ~l jw(a,  - e)C s (7.43) 

As expected, the matrix Z connects particle and antiparticle spinors. 
Iterating this last equation we find (-1)z~/~,_~/*~=ec; anticipating the 
result of equation (7.51) below we infer 

e c = + 1 (7.44) 

and that the ~ c are phase factors of modulus one. With the aid of the 
orthogonality and completeness relations (4.7a) and (4.7b) we obtain for 
the effect of the charge conjugation matrix on the adjoint spinors 

~*( ae) Z - ' =  ~lC c - ~ (  ~, - e) (7.45) 

again we have denoted the inverse of the matrix C" by C - ' .  The plane 
wave solutions f (xlpae ) are found to transform under charge conjugation 
as 

A c f (  x I = n s  x I - C s ( 7 . 4 6 )  
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According to (4.22a) and (4.22b) the corresponding adjoint wave functions 
are then given by 

( ~ ) ( x l p o t e  ) = 71Cc -~f(x[pa, - e) (7.47) 

this, however, is exactly the same as f (x lPae)*Z-1.  Therefore we obtain 
the general transformation law of the adjoint wave function ~(x) under 
charge conjugation 

(~c-~c ~ )(x) = lff(x)* Z -1 (7.48) 

which ensures A c to be an antiunitary operator. [To be exact, we find 
(Acq~,Acd~)=-0p, qb)*, the scalar product (4.23) being indefinite in the 
first-quantized theory.] 

From (7.41b) and Schur's lemma we derive the following explicit 
expression for the block of matrix elements (Zik) of the charge conjugation 
matrix Z: 

( Zik) ~- Zikr( i , k )( U•k ) C k (7.49) 

There the zu, are constant numerical factors [restricted by (7.42); see 
equation (7.55) below]; (UF, k) is the similarity transformation which con- 
nects the irreducible representations Dk(g) and DF'(g t -  l), as introduced in 
(7.9) above, and C k= CAk| C B'. T h e  only vanishing matrix dements of Z 
are found in those blocks (Zig) that connect a given representation (A ,B)  
with its conjugate (B,A). In particular, this implies for the matrix r5 

( f l s Z f l 5 ) i k  = ( --  1 )2A '+2Ak(Z ik )  = ( --  1) 2A~ +2B' (Z ik  ) (7.50a) 

i.e., that 

flsZfl5 = ( - 1)E~z (7.50b) 

Thus the phase factors 7/c for particles and antiparticles are related by 

C 2s C n. no, (7.51) 

The effect of the charge conjugation matrix Z on the spinors w(ote) can be 
written in the form 

( Zw(ae)), = z:(ae)X~(SO') C~, o (7.52a) 

The reduced wave functions z~.(ote) are given by 

z'(ae) = E ~ik(s)z,(ae) (7.52b) 
k 
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where we have introduced the N-dimensional reduced charge conjugation 
matrix E(s),  

~ . i k (S  ) = s - - F  ( -  1) ~k (7.52C) 

with 

~k ---- ( -- 1) A' + a,- rZikS(i ' IC) (7.52d) 

F =  O(�89 for bosons(fermions). This reduced charge conjugation matrix 
satisfies 

~* = ( - 1)251N (7.53) 

and obeys with the reduced mass matrix A(s) of (2.5) the relation 

A(s)~ = - ~A*(s) (7.54) 

Again this last equation (viz., fl0Z= -Zf l~)  and (7.41b) entail the validity 
of Z -  l f l~Z-~- f l~  for all /~. We obtain the following condition on the 
linkage parameters bik and the constants Zik appearing in the charge 
conjugation matrix Z: 

bitZtkS( l, Ic ) = -- E zi, d( i, [ )b~k (7.55) 
l l 

The N-component reduced wave functions z(ae) describing particles at rest 
are then determined from the equations 

and 

A( s)z( sp) = X,( s)z( sp) 

~(~)z*(sp) = ~(~)*z(~p) 

(7.56a) 

(7.56b) 

Having developed the individual symmetry operations P, T, and C, 
we now could investigate their various products and phase relations. As 
these questions are of no great importance to our argument, and as they 
can be treated along standard lines (Bogolubov et al., 1975;Carruthers, 
1971), we do not want to pursue this matter any further here. We close this 
section with the behavior of the Klein-Gordon divisor d(q) under these 
discrete symmetries: 

V-~d(q) Z-- d(O 

W -  ~ d(q) W= d(#*)* 

Z -md(q)Z-- d( - q*)* 

(7.57a) 

(7.57b) 

(7.57c) 
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There q =  (q0,q) is an arbitrary complex 4-vector, ~ = Pq = (q0, _q), and 
the asterisk denotes the complex conjugate. These relations follow at once 
from the properties of the matrices/3 ~ and the fact that the Kle in-Gordon 
divisor is a simple polynomial in 4[ = qfl3 ~ and q2= q~,q~,, with otherwise 
real coefficients. 

8. FREE QUANTUM FIELDS 

In the presence of interaction there is no consistent physical interpre- 
tation of relativistic wave equations within the framework of a single- 
particle theory, and the main reason for our interest in regular wave 
equations lies in the corresponding quantum field theories. For the con- 
struction of field operators based on regular wave equations various levels 
of mathematical sophistication are possible. Here we shall follow the usual 
intuitive approach (Schweber, 1961; Pauli, 1973) of expanding the field in 
terms of a complete set of (plane wave) solutions of the wave equation and 
reinterpreting the amplitudes as creation or annihilation operators. All our 
loose talk about field operators ~(x) at a space-time point [which, strictly 
speaking, do not exist (Wightman, 1964)] can be given precise meaning 
with the aid of appropriately smeared fields ~(f)  (Wightman, 1973). 
However, here we see no point in a more precise but perhaps less familiar 
language for such a relatively trivial topic as the free fields to be studied in 
this section. 

The creation operator at(pa) is defined to produce the single-particle 
state [pa) when applied to the Poincar~ invariant vacuum [0), 

lp,x ) = a*(pa)10 ) (8.1) 

From the transformation properties of these states under the Lorentz 
group we deduce for the creation and annihilation operators 

U(g) a(pa) U - 1(g) = D ~( W - 1(g,pa))oo,a(p'a') (8.2a) 

U( ~-)[ C~o.a*(po 0 ] U -1(g) = D s( ~/- - l(g,pa))~,[ C~o,a*(p'a" ) ] (8.2b) 

with a summation over double indices. We usually do not need to write out 
the triplet of single-particle labels a ~-(sop) and a ' =  (so'p); furthermore, it 
should be clear from the context whether a '  stands for (s'o'p') or (so'p). 
W(g,pa) is the Wigner rotation defined in (3.5c), and the matrix C ~, 
equation (3.11), relates the representation D~(r) with its complex con- 
jugate. These creation and annihilation operators are assumed to satisfy 
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the canonical (anti)commutation relations 

[ a(pa), a*(p'a') ] _+ = 2E~(p) 8 ( p -  p')8(a, a') (8.3) 

where this time a ' =  (s'o'p'). The metric in Fock space is positive definite, 
Ea(p) = +(p2 + m~)1/2, and we shall see below that the microcausality condi- 
tion demands the usual connection between spin and statistics. 

We define the field operator if(x) by its expansion in terms of the 
complete set of plane wave solutions f+(xlpa ) of the wave equation we 
derived in Section 3: 

I~(X) = (2~/T)--3/2 ~ f f +(x[pa)a(pa)+ f_(x]pa')C ;ob*(pa) ] 

(8.4) 

where ct' =(sa'o), and (dpa)= d3p/2E,,~) is the Lorentz-invariant volume 
element. For definiteness we are assuming the particles (operators a, a t) to 
be different from their antiparticles (operators b, bt); the case of a strictly 
neutral Majorana field may be developed along similar lines but appears to 
be of less importance in physics. The matrix C s takes into account the 
slightly different transformation properties of creation and annihilation 
operators. (Note that we do not require manifest covariance under charge 
conjugation.) The so-defined field operator ~(x) satisfies the wave equa- 
tion 

( -  1)r =0 (8.5) 

and it transforms under the Poincar6 group according to 

U -l(a,g)+(x) U(a,g) = D( g)dL(L-l(x -.a)) (8.6) 

where we have used the property (3.28) of the spinors w(pae). 
One of the most fundamental requirements of relativistic quantum 

field theory, the axiom of local commutativity (microcausality), demands 
field operators to commute or anticommute at spacelike separations 
(Bogolubov et al., 1975; Streater and Wightman, 1978). In particular, 

[if(x),•*(y) ] _+ = 0  for ( x - - y ) 2 < 0  (8.7) 

We can easily evaluate this (anti)commutator of the field if(x) with its 
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Hermitian conjugate ~*(y): 

[ = f ( d p . ) [  ui(Pa)@u~(pa)e -i'p(x-y) 

• vi(Pa)| i'a'(x-y) ] (8.8) 

Following arguments similar to those used in the construction of the 
projection operator I'+(q), equations (5.29)-(5.34), we find that u(pa)| 
ut(pa) is a simple matrix polynomial in the 4-vector ~p, 

ui(pa ) | u~t(pa) = N~F~_ (,P)i,~ (8.9a) 
O 

N~ being the normalization constant (3.22a) of the spinors u(pa). In the 
notation of Section 5, this polynomial F~_ can be defined for any complex 
4-vector q~ off the mass shell: 

F~ (q)ik = DA'((q)~,)ui(a)| (8.9b) 

with the arguments 

(q)~=q~o~/m~, (~I)~=~o~/ma=q~5~/m.  (8.9c) 

[Note that in general (q ) .  ~SL(2, C); the D matrices, however, are well 
defined for any 2 • 2 matrix.] Similarly we compute 

~. vi(pa ) | vtk(pa) = N~F: (,~P),k (8.10a) 
0 

with 
F~_(q),k = OA,((q},Ov,(a)| (8.10b) 

These polynomials F~ are simply related to each other. Using the connec- 
tion (3.21c) between the positive- and negative-frequency spinors, we find 

F~_(q)ik ---- (-- 1)2a* +2BkF~ ( -- q)ik (8.1 la) 

that is 
F ~_ (q) = ( - 1)2~F~ ( - q) (8.1 l b) 

Hence we obtain for the (anti)commutator 

[ tp(x), ~r ] .  = - i ~ N2F+ (i3) [ A + (x - y )  w- ( -  1)2*A~ -(x - y )  ] 
a 

(8.12) 
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expressed in terms of the invariant functions A k of (6.5a). The micro- 
causality condition can be satisfied if and only if 

•  1) 2"--- - 1 (8.13) 

giving the usual connection between spin and statistics. Local commutativ- 
ity does not require the solutions f+_(xlpoO to form a complete set. In 
principle we could have left out certain states a from the spectrum of the 
wave equation in the definition (8.4) of q:(x), as microcausality only 
demands that particles and antiparticles occur with equal strength in the 
field operators (crossing symmetry). 

The field operator ~t(x) has certain disadvantages: Its transformation 
law D r ( g )  will generally not be equivalent to D - l ( g ) ,  nor will the wave 
equation satisfied by ~pt(x) be simply related to that of q:(x). Of more 
importance for many purposes is the following field operator ~(x) based 
on the adjoint wave functions ]+_(x[pa) described in Section 4: 

+ b(p.')r 
(8.14) 

This field operator obeys the adjoint wave equation 

(8.15) 

and it transforms under the Poincar6 group according to 

U - , ( a , g ) ~ ( x ) U ( a , g ) = ~ ( L - l ( x _ a ) ) D  - l ( g )  (8.16) 

We obtain for the (anti)commutator 

[ r = (27r)-3~ f (dpa)[ u(pa) | ff(pa)e - ~(~- x) 

- ( - 1)2"v(pa) | 15(pa) e J~(~'- x')] (8.17) 

the factor ( -  1) z" stemming from the square of the matrix C s. With the aid 
of equations (5.43a) and (5.43b) this (anti)commutator can be expressed in 
terms of the invariant functions introduced in Section 6 [in particular, see 
equations (6.5), (6.14), and (6.22)], 

[ ~b(x),~(x') ] _+ = -- i d ( i O ) A ( x  -- x ' )  = -- i S ( x  - x ' )  (8.18) 
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where again only the usual connection between spin and statistics ensures 
local commutativity. According to (6.23), the equal-time (anti)commutator 
is canonical, 

= - ' ( 8 . 1 9 )  [ ~(x),((x')]_+ fl0-- '3 ( r -  r') at x 0 - x  0 

and hence not more singular at the apex of the light cone than in the case 
of the Dirac field. This remarkable result holds for any regular wave 
equation, irrespective of the arbitrarily high spins of the particles involved. 
For it the completeness relation (4.19) was essential, i.e., that we included 
in the field operators ~p and ~ all the states a from the spectrum of the 
wave equation. 

From the transformation properties (3.8) and (3.14) of the one-particle 
states I p a )  under parity and time reversal we deduce for the creation 
operators 

Ueat(pa) U i  I = Tlfat(fia) n ~(r) (8.20a) 

A r a t ( p a ) A ~  l = Tlfat(fia) DS(r ') (8.20b) 

and corresponding formulas for the annihilation operators. The antipar- 
ticle creation operators bt(pa) transform analogously; we denote their 
corresponding phases by ~ .  The operation U c of charge conjugation 
(unitary in the second quantized theory) is defined as 

Uca*(pa) U c '  = ~Cb t(pa) (8.20c) 

The field operators ~p and ~ are found to transform under these discrete 
symmetry operations as follows: 

(8.21a) 

Ue~(x  ) U i ' = ~(  ~) V (8.2 lb) 

A T ~ ( x ) A f  ~ = W - l ~ ( T x )  (8.21C) 

~.47(~)A~ ~ = ,~(rx)  W (8.21d) 

Uc44 x) U~ ~ = Z4 / (x )  (8.21e) 

uc~7(x) u~ - '  = ( -  1)2s47(x)*z - '  (8.210 
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provided the particle and antiparticle phases % and ~ are chosen (up to 
an overall phase factor) 

p .  
- 1) (~7~) (8.22a) 

,T = ~T+, ~f = (~f)* (8.22b) 

=, f+ ,  (8.22c) 

In these formulas V, W, and Z are the matrices introduced in the 
preceding Section 7, and in that same section we have also studied the 
phases ~/~+ of the positive-frequency solutions f+(xlpa). The canonical 
commutations relations (8.18) will be invariant under these transforma- 
tions if 

V- 'S (x )  V= S(2) (8.23a) 

W- 'S (x )  W= - s*(rx)  (8.23b) 

Z - ' S ( x )Z  = S*(x) (8.23c) 

These relations are automatically satisfied because of the corresponding 
properties of the invariant function A(x) and the equations (7.57a)-(7.57c) 
fulfilled by the Klein-Gordon divisor. 

Regular wave equations and the corresponding quantum field theories 
can be derived from a conventional Lagrangian formalism (Heisenberg 
and Pauli, 1929, 1930; Wentzel, 1949), starting from the Lagrangian density 

e(x)  = f ( i ~ -  1)~k(x) (8.24) 

If we assume ,p(x) to transform under the Poincar6 group as ,p'(x')= 
D(g),p(x), and the matrices fl~ to form a 4-vector, D - l ( g ) ~ D ( g ) =  
(_L/3) ", then the field ~(x) has to transform according to ~'(x')= 
~(x)D-l (g)  in order to obtain a Lorentz-invariant Lagrange density. 
Varying ~k and ~ independently, we arrive at the wave equation (1.5) and 
the adjoint equation (4.1) as the corresponding Euler-Lagrange equations. 
The momentum ~r(x) canonically conjugate to q~(x) is given by 

~(x)= O~ ---:  = f f ( x ) B ~  (8 .25)  
0~ 

and the canonical equal-time (anti)commutation relation, 

[ +(x), ~r(x') ] +_ = iS(r- r') at x o = x~ (8.26) 

agrees with our formula (8.19) above. 
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Following standard procedures, we find for the energy-momentum 
tensor 

T~'( x) = i~ ( x) fl~'O "tp( x) (8.27) 

(or its appropriately symmetrized form), and a corresponding formula for 
the angular momentum tensor. In particular we obtain for the en- 
ergy-momentum operator 

P.= f d3xT~ i f  a3x (x)B~ (8.28) 

Expanding the fields in terms of creation and annihilation operators, 
equations (8.4) and (8.14), and using the orthogonality relations (4.23) and 
(4.24) of the plane wave solutions we get 

p~'= ~ f (dpa)op~'[ a*(pa)a(pa)+(-1)2Sb(pa)b*(pa) ] (8.29) 

After normal ordering this operator is positive definite. 
Finally, there exists a conserved current 

j r ( x )  = = o 

A simple calculation gives for the total charge Q = f d3xj~ 

(8.30) 

Q= ~ f (dpa)[a*(pa)a(pa)-(-1)2=b(pa)b*(pa)] (8.31) 

After normal ordering we find the usual result that particles and antipar- 
ticles have opposite charges. 

In closing we want to emphasize that the (anti)commutator function 
S(x) appearing in (8.18) is equal to the difference of the retarded and 
advanced Green's functions (6.25a) and (6.25b) of the wave equation, 
S = S R - SA. From this it then follows that the ingoing and outgoing fields 
satisfy the same commutation relations, both within the framework of the 
K/ill6n-Yang-Feldman equations (Takahashi, 1969; Umezawa, 1956)and 
the Capri construction (Capri, 1969) for external fields. Hence regular 
wave equations do not suffer from the inconsistency found by Wightman 
(1976) for two classes of (irregular) wave equations. 

9. DISCUSSION 

The results of the last section have been anticlimactic as the quantum 
field theories based on regular wave equations have turned out to be 
almost embarrassingly orthodox. Then why was all this not already done 
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thirty years ago? There appear to be various reasons, and most of them 
have little to do with mathematical virtuosity but more with asking the 
fight questions in the first place. Whenever one attempts to generalize the 
Dirac equation several choices have to be made. At the risk of some 
oversimplification the various alternatives are (i) single- or multiple-par- 
tide theories, and related to it (ii) subsidiary conditions or completeness of 
states; (iii) a workable expression for the matrices fl" (implicit algebraic 
definition or explicit formula); and (iv) an appropriate choice of the scalar 
product and the adjoint wave function. 

From the very beginning we have been deliberately looking for 
theories that describe a whole spectrum of particles. This constitutes a 
break with the tradition of introducing for each particle its own wave 
function, which is then coupled to other fields. Hundreds of investigations 
have failed to produce a satisfactory theory of single particles with arbi- 
trary spin that is also consistent in the presence of interaction. We should 
accept the fact that such theories do not exist and that searching for such 
descriptions may be asking the wrong question. After all, why should we 
attempt to describe situations that do not occur in nature? "Single particles 
with any spin" do not exist in the dynamical sense; we only observe 
multiplets of states with various masses and spins, be it in atomic, nuclear, 
or particle physics. We have to keep in mind the dual role of relativistic 
wave functions and wave equations: On the one hand they describe the 
purely kinematical aspects of free particles under Lorentz transformations, 
and on the other hand they specify how a particle interacts with other 
fields. The kinematics of a free particle is uniquely determined by its rest 
mass and spin, and is most conveniently described in the abstract manner 
summarized in equations (3.1)-(3.16), independently of the particular 
choice of the wave function. However, different wave functions will in 
general be dynamically inequivalent once an interaction is turned on. 
From the point of view of dynamics there is no unique theory for a given 
mass and spin, and the correct choice of the wave function can only be 
found by comparison with experiment. (Even for spin-l/2 we believe it is 
simply wrong to say that every spin-l/2 particle necessarily has to be 
described by the Dirac equation.) Experiment indicates an underlying 
multiplet structure of elementary particles, both in their spectroscopy and 
dynamics. As our theories ought to have at least something to do with 
nature, we are almost invariably led to equations that describe whole 
multiplets of particles. 

After having decided on wave equations that contain more than one 
particle, we must then take seriously the full mass spectra of such equa- 
tions. Interactions will in general cause transitions between all the states in 
the spectrum of a wave equation, and we find it only logical to demand 
that all of these states be physically acceptable. We insist that only real 
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masses occur in the wave equation as tachyons appear at present to be not 
more than a controversial theoretical speculation. We furthermore demand 
that there are no "superfluous components" in the wave function, i.e., that 
all its components are actually used to describe particles of finite mass. 
This is equivalent to the postulate that all the solutions of the (free)wave 
equation form a complete set. There we are guided by an analogy with 
ordinary nonrelativistic quantum mechanics where the eigenfunctions of 
the Hamiltonian are always required to form a complete set. Dependent 
components correspond to vanishing eigenvalues of fl0 and formally might 
be interpreted as belonging to particles of infinite mass. Physically, nothing 
is gained from such dependent components except complications as seen in 
the example of Bhabha equations with integer spin (Krajcik and Nieto, 
1975). There these unphysical "subsidiary components" have to be 
eliminated from the physical "particle components" by means of the 
Sakata-Taketani procedure (Sakata and Taketani, 1940a, b). After this 
separation of components has been accomplished the discussion runs then 
parallel to the case of Bhabha equations with half-integral spin. In retro- 
spect it can perhaps be made more plausible why we insist on a complete 
set of states: The completeness relation (4.19) was essential to obtain the 
canonical equal-time commutation relation (8.19); otherwise this com- 
mutator would be more singular and involve certain derivatives of the 
Delta function. Besides, wave equations with dependent components are 
degenerate from the viewpoint of the theory of partial differential equa- 
tions (Wightman, 1973), and even small perturbations can change the 
characteristics of such equations. Progress in theoretical physics does not 
come from a detailed study of pathological cases but from generalizations 
of those theories that work. To us regular wave equations are the natural 
generalization of the nonrelativistic Schr6dinger equation for atomic 
spectra. There the completeness of the eigenfunctions of the Hamiltonian 
is always assumed and theories without this property would be considered 
pathological indeed. 

We have defined a wave equation to be regular if its mass spectrum is 
physically acceptable and all of its solutions form a complete set. It follows 
almost by definition that the Dirae equation is the only regular single-par- 
ticle equation--all other regular equations describe a whole spectrum 
containing different masses and spins. As in the Schr6dinger equation for 
an atom the various members of the spectrum are intrinsically coupled in 
their properties. Such wave equations seem to offer a holistic approach to 
multiplets of particles without the introduction of more elementary sub- 
structures. Few of the more general wave equations considered thus far in 
the literature are regular in the above sense, as most of them have "unne- 
cessary" components corresponding to a singular ,8o. It might be inter- 
jected that in one of the most successful physical theories, namely, in 
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quantum electrodynamics, the photon is described by the vector potential 
A ~(x) which has superfluous components. Although massless particles may 
necessitate a separate treatment, we believe it is only an approximation to 
describe the photon by its own field, independently from all the other 
particles. Ultimately it might be possible to find a wave function that 
describes the photon together with other particles, in particular the vector 
mesons. 

Here in this article we studied free regular wave equations that 
describe a finite number of massive particles (however, most of our results 
can be extended to spectra encompassing an infinite number of states). 
Except for the transformation law (1.3a) of the matrices fl~ under the 
Lorentz group we saw no need for any further restrictions on the fl~. 
Standardizing the transformation law D(g) of the wave function as a direct 
sum of its irreducible components we obtained a workable explicit expres- 
sion for the matrices fl~ in terms of the Clebsch-Gordon coefficients of 
the rotation group. In practice we found the graphical expression for the 
fit, as presented in Figure 1, even more convenient than some ad hoc 
algebra postulated for these matrices. We did not study the algebra 
generated by the fl~ as we see no point in rediscovering in algebraic 
disguise the well-known symmetry properties and recursion formulas of 
Racah and higher recoupling coefficients. Simple algebraic relations will 
only result for particular transformation laws D(g) and special values of 
the linkage parameters big defined in (2.1). None of the algebras proposed 
thus far has led to a realistic mass spectrum and we have left the 
transformation law D(g) and the bi~ completely unspecified. They ulti- 
mately have to be determined from the nonlinear theory of interaction 
formulated in terms of the fields ~p and 5. Qualitatively the mass spectra of 
regular wave equations seem to be flexible enough to accomodate the 
observed spectrum of hadrons and their excited states. 

After having standardized the transformation law D(g) of the wave 
function we could in general not impose any reality requirements on the 
matrices/3 ~, like a Hermitian fl0. (Assuming a real mass spectrum and a 
complete set of states implies of course t0 to be equivalent to tot.) In 
particular we did not require the existence of a hermitizing matrix , /such 
that fl~= ,/fl ~/-1. If there is any significant difference between general 
regular wave equations and the special case of the Dirac equation, it lies in 
the scalar product and the adjoint wave functions. With few exceptions 
(Weaver et al., 1964; Hurley, 1974; Velo and Wightman, 1978) the scalar 
product has been defined with the help of a hermitizing matrix or by 
assuming that there is a simple local connection--one that does not 
involve derivatives--between ~p(x) and the complex conjugate wave func- 
tion. It appears one has to be less axiomatic about the way the scalar 
product is defined [in this connection also see the discussion of Wightman 
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(Velo and Wightman, 19783)]. The standard approach has led to the 
well-known difficulties of negative energies (Harris, 1955;Chang, 
1966;Tung, 1967) or an indefinite metric (Krajcik and Nieto, 1976); this 
invariably happens whenever there occur states with different intrinsic 
parities in the spectrum of the wave equation. However, these difficulties 
are solely caused by an inappropriate definition of the scalar product. We 
do not agree with the conclusion reached by Krajcik and Nieto (1977) that 
an indefinite metric is essential for consistent theories of higher spin. There 
is no reason at all why the scalar product and the adjoint wave function 
have to be constructed in that particular and restricted way, and we have 
shown that there actually exists a scalar product that is free of all these 
difficulties: It fulfills the usual requirements (4.26)-(4.29); within the 
positive definite metric (8.3) it leads to positive energies, equation (8.29), 
and the canonical commutation relations (8.18) and (8.19) without destroy- 
ing the relation S(x)= SR(x ) - SA(x). 

Regular wave equations seem to offer a basis for a consistent descrip- 
tion of (multiplets of) particles with any spin: They lead to quantum field 
theories with positive definite metric and energy, canonical commutation 
relations, and propagators without contact terms. Although here we have 
only considered noninteracting fields, it is apparent by now (and will be 
shown in detail somewhere else) that regular wave equations are free of at 
least the worst inconsistencies that have plagued higher spin theories thus 
far. As we do not impose any constraints we are in no danger of losing any 
in the presence of interaction. Regular wave equations will be shown to be 
causal, at least for minimal coupling. As indicated at the end of the last 
section, the ingoing and outgoing field operators satisfy the same com- 
mutation relations as required for a consistent particle interpretation. We 
expect that the existence of a unitary S matrix for regular wave equations 
in external fields can be proved analogously to the case of the Dirac 
equation (Capri, 1969). Considering the explicit form of the propagators 
one might even speculate that the corresponding quantum field theories 
are renormalizable. 

APPENDIX A: GRAPHICAL CALCULUS FOR D MATRICES 
AND CLEBSCH-GORDAN COEFFICIENTS 

We have assumed the transformation law D(g) of the wave function 
to be given in completely reduced standard form, i.e., as the direct sum of 
its irreducible components, D(g)=Z~)Di(g). These matrices D~(g) = 
D A,(g)| D S,(g) r ~, together with the appropriate Clebsch-Gordan coef- 
ficients, constitute the fundamental entities from which all physical quanti- 
ties are built, like the matrices fir, the plane wave solutions f+(x[pa), the 

3See in particular pp. 36-45. 
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Klein-Gordon divisor, and the ensuing invariant functions. Therefore, in 
many calculations we shall encounter numerous Clebsch-Gordan 
coefficients and D matrices of various arguments, with a summation over 
all the internal magnetic quantum numbers. For that purpose we want to 
sketch a graphical representation of D matrices and Clebsch-Gordan 
coefficients, first developed in connection with the atomic and nuclear 
shell models (Yutsis et al., 1962; E1-Baz and Castel, 1972), which makes 
actual calculations with the general wave equation (1.5) feasible. 

We represent the matrix elements DA(g)aa , of the irreducible repre- 
sentation D a of SL(2, C) by the symbol 

DA (g)aa ' =  a (A.1) 

To distinguish a matrix from its transpose, our formalism is based on 
directed lines: Ingoing (outgoing) lines refer to row (column) indices of 
matrices, and we shall usually suppress the magnetic quantum numbers a 
and a'. The circle will be exclusively used for the representation matrices 
D A; all other matrices will be depicted by different symbols (as, for 
example, the Pauli matrices e r in Figure 1). 

We picture the (normalized) Clebsch-Gordan coefficients by vertices 
with two ingoing (outgoing) and one outgoing (ingoing) line: 

[A3]-Y2 <~Ala~ A202} A3a3~ 

% 
= [A3] <A3a31A~aA2a~ = 

l~ 1 

\ 

A3 

A3 

Y 
(A.2) 
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The normalization factor [A]-1/2, with [A]--2A + 1, has been chosen to get 
simple symmetry properties of these graphs (Biritz, 1975a; Diirr and 
Wagner, 1968). The order in which the angular momenta A l and A 2 are 
coupled together is usually determined by the rule that going around the 
vertex from line A 1 to line A 2 shall correspond to a rotation in the positive 
sense. However, for topological reasons, it is sometimes convenient to 
follow just the opposite convention of a negative rotation; this we shall 
indicate by a minus sign written next to that vertex. Because of the 
symmetry properties of the Clebsch-Gordan coefficients, these two con- 
ventions merely differ by a phase factor: 

: A3 (A.3) 

There are further simple rules (Biritz, 1975a) for changing the orientation 
of external and internal lines, which we do not need to elaborate here. 

The fundamental relation between Clebsch-Gordan coefficients and 
the irreducible representations DA(g) is graphically expressed as 

/$'3 A3 :~ : (A.4) 

A 

Differentiating this equation, we obtain the following identity for the 
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angular momentum matrices J: 

A~ A~ 

A2 A2 

m 

A1 ~ 3 

A2 

(A.5) 

As a special example of the Wigner-Eckart theorem, the elements of the 
angular momentum matrices (Ja)aa' can be expressed in terms of 
Clebsch-Gordan coefficients. Graphically, we find for the spherical vector 
components A Jp ,p=  1 ,0 , -  1, 

A A 
= AII.T (A.6) 

]p"  

with the usual abbreviation (AIIJIIA)=[A(A+I)(2A+I)] 1/2 for the re- 
duced angular momentum matrix element. 

The orthogonality and completeness relations of the Clebsch-Gordan 
coefficients are depicted as 

A2 ~ ---- ~)A~ A(AA~A2) 

AI 

A 
> (A.7) 



682 Biritz 

and 

A~ A~ 

~x~ ", ~ / -  / 
A1 

(A.8) 
II 

A2 

The single lines on the right-hand side of these equations represent the 
appropriate unit matrices; A(AIA2A3)=I if the three angular momenta 
satisfy the triangle inequality, A=0 otherwise. For internal lines a sum 
over the corresponding magnetic quantum numbers is always to be under- 
stood. 

Finally, we give a graphical definition of the 6j (Racah) and 9j 
symbols: 

/ 
'~2 

(A.9) 

Jl 

_Z 

J3 

s, J' j~ L s, 
"~- [1 12 13 (A.10) 

51 52 53 

It turns out that the orientation of the internal 13 line in (A.9) is irrelevant, 
as are the orientations of the j  2 and 13 lines in (A.10). 

Such simple graphical rules allow an almost effortless handling of 
higher recoupling coefficients, including their correct phase factors; an 
application of these rules will be given in Appendix B. 



Consistent Wave Equations 

APPENDIX B: A RECURSION FORMULA FOR CERTAIN 9j 
SYMBOLS 

683 

In Section 2 we derived from the commutation relation (2.1 lb) of the 
fl matrices the connection (2.15) between the reduced matrix elements of/3 
and fl0, that is between 9j and 6j symbols. This relation is a particular 
example of a more general recursion formula which holds for certain 9j 
symbols; it is based on the simple property (A.5) of the angular momen- 
tum matrices and their graphical expression (A.6). 

Consider the 9j symbols defined in (A.10) for the special case of 
J3 = 13 =J,  and s 3 = 1 : 

J, j 

- ~ = I, 12 J 5 1  (B.1) 
51 1 

In the graph on the left-hand side there occur the two vertices coupling the 
(JlJ2J) and (j j l )  lines. According to (A.5) and (A.6) we have the identity 

(JJlJllJ) j'~ �9 = 11 
J~l J J 

I' J - (J~JJJnJ~) j~ J 

j j~ I 

(B.2) 

This identity (B.2) allows us to recouple the s 3 = 1 line from the j  line onto 
the j l  and j2 lines. Therefore the graph in (B.1) can be expressed as a sum 
of two graphs corresponding to the recoupled s 3 = 1 line. Each of these two 
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new graphs is found to contain two internal triangles, which, according to 
the rule (A.9), can be collapsed to a point times a Racah coefficient. 
Collecting all normalization factors and phases we obtain the recursion 
formula 

l Jl J2 i }  
(JlIJLIJ) 11 12 

I S I S 2 

=( - l ) "+J - t~ ( -1 ) s ' - ( J211J l l J=) l l  2 l I s 1 s I 1 J2 

- ( -1)J2+J-A(j  l[tJtljl){/l  2 J2,, Js2}{Jl 2 II S, 1 Jl } (B.3) 

where again (jl[J[lj) = [jU + 1)(2j+ 1)11/2. The relation (2.15) corresponds 
to the special case where j = 1/2. 

We take this opportunity to correct some unfortunate mistakes in the 
literature. Setting s I = s  u = s in (B.3), we find the formula 

= ( _ l ) l , + s + j 2 + j j l ( j l + l ) - j 2 ( J 2 + l ) - l l ( l l + l ) + 1 2 ( 1 2 + l ) ( J l  J2 J }  
2 [ s ( s + l ) ( 2 s + l ) j ( j + l ) ( 2 j + l ) ] l / 2  l 2 l I S 

(B.4) 

In some books (deShalit and Talmi, 1963; deShalit and Feshbach, 1974) an 
expression is given for this 9j symbol where both the normalization and 
the phase factor are wrong. [The formulas given in deShalit and Talmi 
(1963) and deShalit and Feshbach (1974) are easily seen to be incorrect by 
settingjl =s ,  l I ---0, j 2 = s -  1/2, 12= 1/2 , j - -  1/2, and computing the ensu- 
ing 9j symbol directly.] As far as we can tell, this error can be traced to the 
wrong formula (3.24) of Rotenberg, Metropolis, Bivens, and Wooten 
(1959), which in turn is based on the wrong equation (3.23) of the same 
reference: In the third Racah coefficient on the right-hand side of equation 
(3.23) of Rotenberg et al. (1959), the triplet ((j/~) has to be replaced by 
(hjl~). [The correct formula can be found in the original paper of Arima, 
Horie, and Tanabe (1954), which is reprinted in Biedenharn and van Dam 
(1965).] 
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We have checked our formula (B.3) with explicit expressions of 9j 
symbols as given, for example, in Sobel'man (1972)--and vice versa: There 
is an overall minus sign missing in the second entry, that for / = j  + 1/2, l '  
= j ' -  1/2, of Table 60 on p.181 of Ref. Sobel'man (1972). 

APPENDIX C: TWO SPECIAL RACAH COEFFICIENTS 

For completeness we list here the two types of Racah coefficients that 
may occur in the reduced mass matrix A(s) defined in Section 2, and from 
which the mass spectrum of the wave equation is determined. We find 
from standard tables (deShalit and Talmi, 1963; Sobel'man, 1972) 

A B s } 
B + l / 2  A + l / 2  1/2 

_~(__I)A+B+s+I[ (A-[-B-t-1)(A-[--B-[-2)-s(s-t-1) ]1/2 
(2A + 1)(2A + 2)(2B + 1)(2B + 2) 

(C.1) 

A B 
8+1/2 a -1 /2  1/2 

=(_l)a+B+s[ s(s+I)-(A-B-I)(A-B) ]1/2 
2A(2A + 1)(2.  + 1)(2B+2) 

(c.2) 

where the various angular momenta are assumed to satisfy the triangle 
inequalities appropriate for a Racah coefficient. We have slightly re- 
arranged the numerator to show more clearly the spin dependence of these 
coefficients: (C.1) is a decreasing function of spin whereas (C.2) is increas= 
ing. In general both of these two types of Racah coefficients will contribute 
to the mass spectrum of the wave equation. 
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